

The PageRank Algorithm John Orr Introduction

PageRank

Computation

Further issues

The PageRank Algorithm and Web Search Engines

John Lindsay Orr

University Of Nebraska - Lincoln

April 2010

jorr@math.unl.edu

Nebraska Lincoln	What is PageReank?
The PageRank Algorithm John Orr	
Introduction	
PageRank	
Computation	PageRank is an algorithm for ranking the importance of
Further issues	webpages.

It was developed in the late '90's by Larry Page and Sergey Brin, at that time grad students at Stranford.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

The PageRank Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

Brin and Page, The anatomy of a large-scale hypertextual web search engine, 1998

Page, Brin, Motwani, Rajeev, Winograd, The PageRank citation ranking, 1998

Bonato, A course on the web graph, AMS 2008

Bryan and Leise, The \$25,000,000,000 eigenvector, SIAM Review 2006

Nebrasir la Lincoln	The job of a search engine
The PageRank Algorithm John Orr	
Introduction	
PageRank	
Computation	
Further issues	The job of a search engine is to receive queries and return a usable list of relevant matches, within in a reasonable time.

Nebraska Lincoln	The job of a search engine
The PageRank Algorithm	
John Orr	
Introduction	
PageRank	
Computation	
Further issues	The job of a search engine is to receive queries and return a usable list of relevant matches, within in a reasonable time.

Nebraska Lincoln	What is the web?
The PageRank Algorithm John Orr Introduction PageRank Computation Further issues	The web is a distributed, linked collection of documents.

Nebraska Lincoln	What is the web?
The PageRank Algorithm John Orr Introduction PageRank Computation Further issues	 The web is a distributed, linked collection of documents. This isn't as obvious as it sounds: HTML or other content types? Static or dynamic? HTTP(S) or other protocols? Public or restricted?

The web is big $_{\text{But how big?}}$

The PageRank Algorithm

John Orr

Introduction

 $\mathsf{PageRank}$

Computation

Further issues

It's hard to tell how big, because estimates vary wildly and are constantly changing.

What counts as a web page: a URL, or the content returned? The "surface web" or the "deep web"?

Google (2008) claimed to have identified 1 trillion URLs, but they only index a fraction of those.

The size of the "indexed web" today is probably measured in the 10's of billions.

The web is big Simple evidence

The PageRank Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

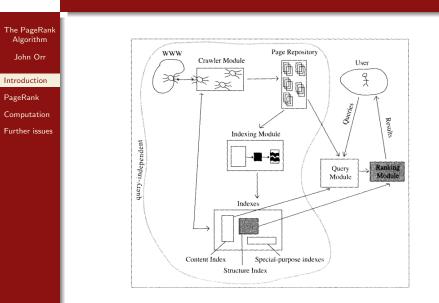
A Google query on *a* finds over 25 billion results.

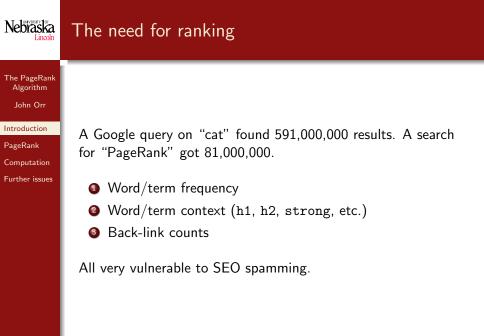
A breadth-first search rooted at http://www.math.unl.edu found 21,000 internal pages. What percentage of UNL is the Math Dept? What percentage of the web is UNL? Surely

 $20,000 \times 50 \times 10,000 = 10^{10}$

is a huge underestimate.

Nebraska How does a search engine work?





◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Nebraska Lincoln	Link analysis
The PageRank Algorithm John Orr	
Introduction	
PageRank	
Computation	
Further issues	PageRank – and other ranking algorithms, e.g., HITS – use global link analysis.

PageRank: The goal

The PageRank Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

Let W be the web-graph. Vertices are pages and there is a directed edge from u to v if a hyperlink, cat, is found in u, pointing to v. (Ignore multiple links and loops.)

```
Let n = |W| (n \sim 10^{10}).
```

Seek a single vector $r \in \mathbb{R}^n$, with

1
$$r_i \ge 0$$

2 $||r||_1 = 1$

(i.e., stochastic), where each r_i represents the relative importance of page v_i .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

PageRank: The goal

The PageRank Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

Let W be the web-graph. Vertices are pages and there is a directed edge from u to v if a hyperlink, cat, is found in u, pointing to v. (Ignore multiple links and loops.)

```
Let n = |W| (n \sim 10^{10}).
```

Seek a single vector $r \in \mathbb{R}^n$, with

1
$$r_i \ge 0$$

2 $||r||_1 = 1$

(i.e., stochastic), where each r_i represents the relative importance of page v_i .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Nebraska Lincoln	What's important?
The PageRank Algorithm John Orr	
Introduction	A page is important if a lot of important pages cite it.
PageRank	
Computation	
Further issues	

Nebraska Lincoln	What's important?
The PageRank Algorithm John Orr Introduction PageRank Computation Further issues	A page is important if a lot of important pages cite it. $r_i = \sum_{v_j \to v_i} r_j$

Nebraska Lincoln	What's important?
The PageRank Algorithm John Orr Introduction PageRank Computation Further issues	A page is important if a lot of important pages cite it. $r_i = \sum_{v_j \to v_i} r_j$
	$r_i = \sum_{v_j \to v_i} \frac{1}{d_j^+} r_j$

What's important?

The PageRank Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

Let A be the adjacency matrix of the directed graph W (i.e., $a_{i,j} = 1$ if $v_i \rightarrow v_j$, otherwise zero).

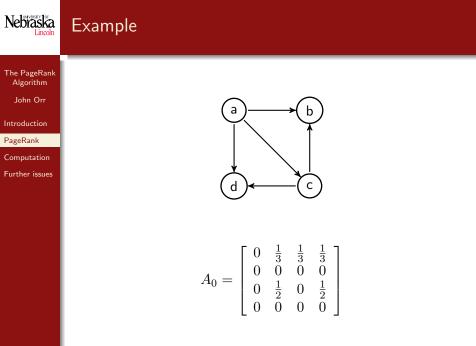
Let $D = diag(d_1^+, \ldots, d_n^+)$.

Let $A_0 = D^{-1}A$ (allowing for non-invertibility)

Then

$$r = rA_0$$

In other words, find an eigenvector (the eigenvector?) of A_0 for $\lambda = 1$.



Problems Sinks

The PageRank Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

There are sure to be sinks in W.

If \boldsymbol{W} is a chain then

$$A_0 = \begin{bmatrix} 0 & 1 & 0 & \cdots & & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & & & \ddots & \\ 0 & 0 & \cdots & & & \end{bmatrix}$$

which is nilpotent and so $sp(A_0) = \{0\}$

I.e., solutions to $rA_0 = r$ do not exist.

Problems Connectedness

The PageRank Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

 \boldsymbol{W} is not strongly connected or even connected.

$$A_0 = \left[\begin{array}{cc} A' & * \\ 0 & A'' \end{array} \right]$$

The multiplicity of $\lambda = 1$ is greater than 1.

I.e., solutions to $rA_0 = r$ are not unique.

Random surfer model

The PageRank Algorithm

John Orr

Introduction

 $\mathsf{PageRank}$

Computation

Further issues

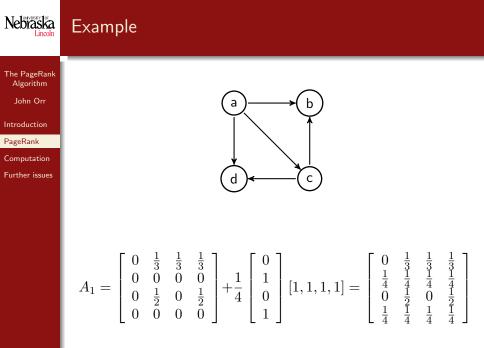
Imagine a (finite state, discrete time, time-homogenous) Markov Process on W.

At each step the surfer clicks a link uniformly at random from the links on her current page.

If the page has no outlinks, pick a page uniformly at random from W. The transition probabilities for this process are

$$A_1 = A_0 + \frac{1}{n}z^T \mathbf{1}$$

where z is the indicator vector for the sinks ($z_i = 1$ if $d_i^+ = 0$ and is 0 otherwise), and $\mathbf{1} = (1, 1, \dots, 1)$.



Random surfer model

The PageRank Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

The transition matrix

$$A_1 = A_0 + \frac{1}{n}z^T \mathbf{1}$$
$$= D^{-1}A + \frac{1}{n}z^T \mathbf{1}$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

is a row-stochastic matrix.

Random surfer model

The PageRank Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

The stationary distribution of the process is the long-term proportion of the time that the surfer will spend on each page.

If $p = (p_i)$ is the stationary distribution then

$$p = pA_1$$

and so we are still seeking an eigenvector for $\lambda=1,$ but now of our modified matrix, $A_1.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Nebraska Lincoln	Stochastic matrices
The PageRank Algorithm John Orr Introduction PageRank Computation Further issues	Lemma If S is a (row) stochastic matrix then $\lambda = 1$ is an eigenvalue. Proof. $S1^T = 1^T$.

Nebraska Lincoln	Perron's Theorem
The PageRank Algorithm John Orr Introduction	Theorem Let $P > 0$ and let ρ be the spectral radius of P . Then
PageRank Computation Further issues	 Q ρ is positive and is an eigenvalue of P, Q ρ has left and right eigenvectors with positive entries, Q ρ has algebraic & geometric multiplicity 1, and Q all the other eigenvalues are less than ρ in magnitude.
	Proof.

Find a fixed point of $Px/||Px||_1$ on $x_i \ge 0$, $\sum x_i = 1...$

・ロト・日本・モト・モー・ しょうくの

Perron's Theorem Stochastic matrices

The PageRank Algorithm

John Orr

Introduction

 $\mathsf{PageRank}$

Computation

Further issues

So if P is a positive row-stochastic matrix, and x is a positive left eigenvector for $\rho,$ then

$$\|x\|_{1} = x\mathbf{1}^{T} = x(P\mathbf{1}^{T}) = (xP)\mathbf{1}^{T} = \rho x\mathbf{1}^{T} = \rho \|x\|_{1}$$

and so

 $\rho = 1$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Nebraska But there's still a problem...

The PageRank Algorithm

John Orr

Introduction PageRank

Computation Further issues Our transition matrix

$$A_1 = D^{-1}A + \frac{1}{n}z^T\mathbf{1}$$

isn't positive.

(If A_1 were irreducible we could use the Perron-Frobenius Theorem.)

It's the same issue as before; failure of (strong) connectedness.

Nebraska Lincoln	Adapt the random surfer model
The PageRank Algorithm John Orr Introduction PageRank Computation Further issues	Imagine now at each step that the random surfer either clicks a link uniformly at random from the links on her current page or else with probability α jumps to a new page chosen uniformly at random from W .

The probability α is called the teleportation constant.

・ロト < 団ト < 三ト < 三ト < 三 ・ のへ(?)

Nebraska Lincol Adapt the random surfer model

The PageRank Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

The new transition matrix is

$$A_{2} = (1 - \alpha)(D^{-1}A + \frac{1}{n}z^{T}\mathbf{1}) + \alpha \frac{1}{n}\mathbf{1}^{T}\mathbf{1}$$

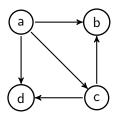
This is often called the Google Matrix.

Clearly this is positive, stochastic.

Brin & Page (1998) report using $\alpha = 0.15$ in early Google.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Example



$$A_2 = \begin{bmatrix} 0.0375 & 0.3208 & 0.3208 & 0.3208 \\ 0.2500 & 0.2500 & 0.2500 & 0.2500 \\ 0.0375 & 0.4625 & 0.0375 & 0.4625 \\ 0.2500 & 0.2500 & 0.2500 & 0.2500 \end{bmatrix}$$

 $p = \begin{bmatrix} 0.1683 & 0.3078 & 0.2160 & 0.3078 \end{bmatrix}$

Nebraska Linon Computation: Computing the eigenvector Computational obstacles

The PageRank Algorithm John Orr

Introduction

PageRank

Computation

Further issues

We need to solve

$$pA_2 = p$$
 or $p(A_2 - I) = 0$

Gauss-Jordan elimination is $O(n^3)$, or $\sim 10^{30}$.

Moreover, it requires storage of the entire array, $O(n^2)$, or $\sim 10^{20}$ bytes (1 petabyte $\simeq 10^{12}$ bytes)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Computing the eigenvector

The PageRank Algorithm John Orr

Nebraska

Let

Introduction

PageRank

Computation

Further issues

$$p_0 = \frac{1}{n} \mathbf{1}$$
$$p_{k+1} = p_k A_2$$

so that $p_k = p_0 A_2^k$.

Since $p_k \mbox{ is a product of row stochastic matrices, it is row stochastic.$

Thus, if p_k converges, it converges to the normalized eigenvector (a.k.a., stationary distribution)

Power method But does it converge?

The PageRank Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

By Perron's Theorem, ${\it A}_2$ is similar to a block Jordan matrix

 $\begin{bmatrix} 1 & & & \\ & J_{\lambda_2}^{(m_2)} & & \\ & & J_{\lambda_3}^{(m_3)} & \\ & & & \ddots \end{bmatrix}$

where the eigenvalues of A_2 are

 $1 > \lambda_2 > \lambda_3 > \cdots > \lambda_N$

each with multiplicity m_i . (In particular, $m_1 = 1$.)

Power method But does it converge?

The PageRank Algorithm John Orr

Introduction

 $\mathsf{PageRank}$

Computation

Further issues

The powers of the Jordan blocks, $(J_{\lambda_i}^{(m_i)})^k$ converge to $0_{m_i \times m_i}$ and the rate of convergence is $O(\lambda_i^k)$.

Thus

- ${\small \bigcirc} \ A_2^k \text{ converges to } {\bf 1}^T p$
- 2 p_k converges to p_i (independent of p_0 , in fact) and

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

③ the rate of convergence is $O(\lambda_2^k)$.

Power method Complexity

The PageRank Algorithm John Orr Introduction PageRank

Computation

Further issues

$$p_{k+1} = p_k A_2$$

= $(1 - \alpha) p_k D^{-1} A + \underbrace{\frac{1 - \alpha}{n} p_k z^T \mathbf{1}}_{O(n)} + \underbrace{\frac{\alpha}{n} p_k \mathbf{1}^T \mathbf{1}}_{O(n)}$

Most pages can be expected to contain a bounded number of outlinks. Empirical studies suggest the average number of outlinks per page is around 10. Thus A is sparce, and computing $p_k D^{-1}A$ is also O(n).

Each iteration is O(n) operations. All operations are matrix-vector and from the form of the vectors (diagonal, rank-1, and sparce) storage is also O(n).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

Power method Rate of convergence

The PageRank Algorithm	l
John Orr	l
Introduction	l
PageRank	l

Computation

Further issues

Brin & Page (1998) report that 52 iterations yield "reasonable tolerance" on a 322 million link database.

The following analysis casts light on the rapid convergence...

Power method Rate of convergence

The PageRank Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

Theorem (Haveliwala & Kamavar, 2003)

If the eigenvalues of the stochastic matrix A_1 are

$$\{1, \lambda_2, \lambda_3, \ldots, \lambda_n\}$$

then the eigenvalues of

$$A_2 = (1 - \alpha)A_1 + \frac{\alpha}{n}\mathbf{1}^T\mathbf{1}$$

are

$$\{1, (1-\alpha)\lambda_2, (1-\alpha)\lambda_3, \dots, (1-\alpha)\lambda_n\}$$

イロト イポト イヨト イヨト

Corollary

The power method computation of the PageRank vector converges $O((1-\alpha)^k)$.

Power method Rate of convergence

The PageRank Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

Proof (Langeville & Meyer, 2005)

Observe

$$A_1 \mathbf{1}^T = \mathbf{1}^T$$
 and $\frac{1}{n} (\mathbf{1}^T \mathbf{1}) \mathbf{1}^T = \mathbf{1}^T$

and so, wrt a basis that starts with $\mathbf{1}$,

$$A_{2} = (1 - \alpha)A_{1} + \frac{\alpha}{n}\mathbf{1}^{T}\mathbf{1}$$
$$= (1 - \alpha)\begin{bmatrix} 1 & * \\ 0 & B \end{bmatrix} + \alpha \begin{bmatrix} 1 & * \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & * \\ 0 & (1 - \alpha)B \end{bmatrix}$$

Stability

The PageRank Algorithm John Orr

Introduction

PageRank

Computation

Further issues

The web is constantly changing, and so rankings are not useful unless they are stable under small perturbations of W.

Theorem (Ng, Zheng, Jordan 2001)

Let G be the PageRank matrix defined on a directed graph W and let p be its stationary distribution. Suppose W' is obtained by changing the outlinks of vertices i_1, i_2, \ldots, i_k , and let G' and p' be the corresponding perturbations of G and p. Then

$$\|p' - p\|_1 \le \frac{2\sum_{j=1}^k p_{i_j}}{\alpha}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ の

Variants of PageRank

The PageRank Algorithm John Orr

Introduction

 $\mathsf{PageRank}$

Computation

Further issues

"Intelligent surfer" transition matrix, A_1' with values computed from server logs.

"Personalized teleportation vector", v, gives

$$(1-\alpha)A_1' + \frac{\alpha}{n}\mathbf{1}^T v$$

The complexity of the calculation makes genuinely personalized vectors impractical.