
The PageRank
Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

The PageRank Algorithm and Web Search
Engines

John Lindsay Orr

University Of Nebraska – Lincoln

April 2010

jorr@math.unl.edu
1 / 37

mailto:jorr@math.unl.edu


The PageRank
Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

What is PageReank?

PageRank is an algorithm for ranking the importance of
webpages.

It was developed in the late ’90’s by Larry Page and Sergey
Brin, at that time grad students at Stranford.
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The job of a search engine

The job of a search engine is to receive queries and return a
usable list of relevant matches, within in a reasonable time.
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What is the web?

The web is a distributed, linked collection of documents.

This isn’t as obvious as it sounds:

HTML or other content types?

Static or dynamic?

HTTP(S) or other protocols?

Public or restricted?
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The web is big
But how big?

It’s hard to tell how big, because estimates vary wildly and are
constantly changing.

What counts as a web page: a URL, or the content returned?
The “surface web” or the “deep web”?

Google (2008) claimed to have identified 1 trillion URLs, but
they only index a fraction of those.

The size of the “indexed web” today is probably measured in
the 10’s of billions.
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The web is big
Simple evidence

A Google query on *a* finds over 25 billion results.

A breadth-first search rooted at http://www.math.unl.edu
found 21,000 internal pages. What percentage of UNL is the
Math Dept? What percentage of the web is UNL? Surely

20, 000× 50× 10, 000 = 1010

is a huge underestimate.

7 / 37



The PageRank
Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

How does a search engine work?
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The need for ranking

A Google query on “cat” found 591,000,000 results. A search
for “PageRank” got 81,000,000.

1 Word/term frequency

2 Word/term context (h1, h2, strong, etc.)

3 Back-link counts

All very vulnerable to SEO spamming.
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Link analysis

PageRank – and other ranking algorithms, e.g., HITS – use
global link analysis.
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PageRank: The goal

Let W be the web-graph. Vertices are pages and there is a
directed edge from u to v if a hyperlink,
<a href="...">cat</a>, is found in u, pointing to v. (Ignore
multiple links and loops.)

Let n = |W | (n ∼ 1010).

Seek a single vector r ∈ Rn, with

1 ri ≥ 0
2 ‖r‖1 = 1

(i.e., stochastic), where each ri represents the relative
importance of page vi.
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What’s important?

A page is important if a lot of important pages cite it.

ri =
∑
vj→vi

rj

ri =
∑
vj→vi

1
d+
j

rj
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What’s important?

Let A be the adjacency matrix of the directed graph W (i.e.,
ai,j = 1 if vi → vj , otherwise zero).

Let D = diag(d+
1 , . . . , d

+
n ).

Let A0 = D−1A (allowing for non-invertibility)

Then
r = rA0

In other words, find an eigenvector (the eigenvector?) of A0 for
λ = 1.
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Example

a b

cd

A0 =


0 1

3
1
3

1
3

0 0 0 0
0 1

2 0 1
2

0 0 0 0
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Problems
Sinks

There are sure to be sinks in W .

If W is a chain then

A0 =


0 1 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 0 · · · 0
...

...
. . .

0 0 · · ·


which is nilpotent and so sp(A0) = {0}

I.e., solutions to rA0 = r do not exist.
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Problems
Connectedness

W is not strongly connected or even connected.

A0 =
[
A′ ∗
0 A′′

]
The multiplicity of λ = 1 is greater than 1.

I.e., solutions to rA0 = r are not unique.
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Random surfer model

Imagine a (finite state, discrete time, time-homogenous)
Markov Process on W .

At each step the surfer clicks a link uniformly at random from
the links on her current page.

If the page has no outlinks, pick a page uniformly at random
from W . The transition probabilities for this process are

A1 = A0 +
1
n
zT1

where z is the indicator vector for the sinks (zi = 1 if d+
i = 0

and is 0 otherwise), and 1 = (1, 1, . . . , 1).
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Example

a b

cd

A1 =


0 1

3
1
3

1
3

0 0 0 0
0 1

2 0 1
2

0 0 0 0

+
1
4


0
1
0
1

 [1, 1, 1, 1] =


0 1

3
1
3

1
3

1
4

1
4

1
4

1
4

0 1
2 0 1

2
1
4

1
4

1
4

1
4
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Random surfer model

The transition matrix

A1 = A0 +
1
n
zT1

= D−1A+
1
n
zT1

is a row-stochastic matrix.
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Random surfer model

The stationary distribution of the process is the long-term
proportion of the time that the surfer will spend on each page.

If p = (pi) is the stationary distribution then

p = pA1

and so we are still seeking an eigenvector for λ = 1, but now of
our modified matrix, A1.
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Stochastic matrices

Lemma

If S is a (row) stochastic matrix then λ = 1 is an eigenvalue.

Proof.

S1T = 1T .

In other words, 1T is a right eigenvector, and so there must
exist left eigenvectors too.

21 / 37



The PageRank
Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

Perron’s Theorem

Theorem

Let P > 0 and let ρ be the spectral radius of P . Then. . .

1 . . . ρ is positive and is an eigenvalue of P ,

2 . . . ρ has left and right eigenvectors with positive entries,

3 . . . ρ has algebraic & geometric multiplicity 1, and

4 . . . all the other eigenvalues are less than ρ in magnitude.

Proof.

Find a fixed point of Px/‖Px‖1 on xi ≥ 0,
∑
xi = 1. . .
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Perron’s Theorem
Stochastic matrices

So if P is a positive row-stochastic matrix, and x is a positive
left eigenvector for ρ, then

‖x‖1 = x1T = x(P1T ) = (xP )1T = ρx1T = ρ‖x‖1

and so
ρ = 1
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But there’s still a problem. . .

Our transition matrix

A1 = D−1A+
1
n
zT1

isn’t positive.

(If A1 were irreducible we could use the Perron-Frobenius
Theorem.)

It’s the same issue as before; failure of (strong) connectedness.
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Adapt the random surfer model

Imagine now at each step that the random surfer either. . .

clicks a link uniformly at random from the links on her current
page

. . . or else . . .

with probability α jumps to a new page chosen uniformly at
random from W .

The probability α is called the teleportation constant.
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Adapt the random surfer model

The new transition matrix is

A2 = (1− α)(D−1A+
1
n
zT1) + α

1
n
1T1

This is often called the Google Matrix.

Clearly this is positive, stochastic.

Brin & Page (1998) report using α = 0.15 in early Google.
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Example

a b

cd

A2 =


0.0375 0.3208 0.3208 0.3208
0.2500 0.2500 0.2500 0.2500
0.0375 0.4625 0.0375 0.4625
0.2500 0.2500 0.2500 0.2500


p =

[
0.1683 0.3078 0.2160 0.3078

]
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Computation: Computing the eigenvector
Computational obstacles

We need to solve

pA2 = p or p(A2 − I) = 0

Gauss-Jordan elimination is O(n3), or ∼ 1030.

Moreover, it requires storage of the entire array, O(n2), or
∼ 1020 bytes (1 petabyte ' 1012 bytes)
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Computing the eigenvector
Power method

Let

p0 =
1
n
1

pk+1 = pkA2

so that pk = p0A
k
2.

Since pk is a product of row stochastic matrices, it is row
stochastic.

Thus, if pk converges, it converges to the normalized
eigenvector (a.k.a., stationary distribution)
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Power method
But does it converge?

By Perron’s Theorem, A2 is similar to a block Jordan matrix
1

J
(m2)
λ2

J
(m3)
λ3

. . .


where the eigenvalues of A2 are

1 > λ2 > λ3 > · · · > λN

each with multiplicity mi. (In particular, m1 = 1.)
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Power method
But does it converge?

The powers of the Jordan blocks, (J (mi)
λi

)k converge to 0mi×mi

and the rate of convergence is O(λki ).

Thus

1 Ak2 converges to 1T p
2 pk converges to p, (independent of p0, in fact) and

3 the rate of convergence is O(λk2).
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Power method
Complexity

pk+1 = pkA2

= (1− α)pkD−1A+
1− α
n

pkz
T1︸ ︷︷ ︸

O(n)

+
α

n
pk1T1︸ ︷︷ ︸
O(n)

Most pages can be expected to contain a bounded number of
outlinks. Empirical studies suggest the average number of
outlinks per page is around 10. Thus A is sparce, and
computing pkD

−1A is also O(n).

Each iteration is O(n) operations. All operations are
matrix-vector and from the form of the vectors (diagonal,
rank-1, and sparce) storage is also O(n).
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Power method
Rate of convergence

Brin & Page (1998) report that 52 iterations yield “reasonable
tolerance” on a 322 million link database.

The following analysis casts light on the rapid convergence. . .

33 / 37



The PageRank
Algorithm

John Orr

Introduction

PageRank

Computation

Further issues

Power method
Rate of convergence

Theorem (Haveliwala & Kamavar, 2003)

If the eigenvalues of the stochastic matrix A1 are

{1, λ2, λ3, . . . , λn}

then the eigenvalues of

A2 = (1− α)A1 +
α

n
1T1

are
{1, (1− α)λ2, (1− α)λ3, . . . , (1− α)λn}

Corollary

The power method computation of the PageRank vector
converges O((1− α)k).
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Power method
Rate of convergence

Proof (Langeville & Meyer, 2005)

Observe

A11T = 1T and
1
n

(1T1)1T = 1T

and so, wrt a basis that starts with 1,

A2 = (1− α)A1 +
α

n
1T1

= (1− α)
[

1 ∗
0 B

]
+ α

[
1 ∗
0 0

]
=
[

1 ∗
0 (1− α)B

]
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Stability

The web is constantly changing, and so rankings are not useful
unless they are stable under small perturbations of W .

Theorem (Ng, Zheng, Jordan 2001)

Let G be the PageRank matrix defined on a directed graph W
and let p be its stationary distribution. Suppose W ′ is obtained
by changing the outlinks of vertices i1, i2, . . . , ik, and let G′

and p′ be the corresponding perturbations of G and p. Then

‖p′ − p‖1 ≤
2
∑k

j=1 pij

α
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Variants of PageRank

“Intelligent surfer” transition matrix, A′1 with values computed
from server logs.

“Personalized teleportation vector”, v, gives

(1− α)A′1 +
α

n
1T v

The complexity of the calculation makes genuinely personalized
vectors impractical.
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