Classifying Stable Ideals of Nest Algebras

John L. Orr

jorr@math.unl.edu

University of Nebraska–Lincoln

Introduction

Lecture plan:

- Nest algebras and their ideals
- Stable ideals
- Examples
- Characterization
- Classification
- Applications

A nest, \mathcal{N} , is a complete, linearly ordered lattice of projections.

$$\operatorname{Alg} \mathcal{N} = \{X : N^{\perp} X N = 0\}$$

A nest, \mathcal{N} , is a complete, linearly ordered lattice of projections.

$$\operatorname{Alg} \mathcal{N} = \{ X : N^{\perp} X N = 0 \}$$

Mostly, we use *continuous* nests.

Ideals

There is a very rich selection of norm-closed ideals.

- Weakly closed ideals
- Radicals
- Compact and compact-like

Theorem 1 (Erdos-Power, '82). \mathfrak{I} is a weakly closed ideal of $\operatorname{Alg} \mathcal{N}$ if and only if there is a increasing map $\theta : \mathcal{N} \to \mathcal{N}$ satisfying $\theta(N) \leq N$ such that

 $\mathcal{I} = \{ X \in \operatorname{Alg} \mathcal{N} : \theta(N)^{\perp} X N = 0 \quad \forall N \in \mathcal{N} \}$

Theorem 1 (Erdos-Power, '82). \mathfrak{I} is a weakly closed ideal of $\operatorname{Alg} \mathcal{N}$ if and only if there is a increasing map $\theta : \mathcal{N} \to \mathcal{N}$ satisfying $\theta(N) \leq N$ such that

 $\mathcal{I} = \{ X \in \operatorname{Alg} \mathcal{N} : \theta(N)^{\perp} X N = 0 \quad \forall N \in \mathcal{N} \}$

The Radical

Definition 2. For $X \in \operatorname{Alg} \mathcal{N}$, define

$$i_N^+(X) := \inf_{M > N} \| (M - N)X(M - N) \|$$
$$i_N^-(X) := \inf_{M < N} \| (N - M)X(N - M) \|$$

The Radical

Definition 2. For $X \in \operatorname{Alg} \mathcal{N}$, define

$$i_N^+(X) := \inf_{M > N} \| (M - N)X(M - N) \|$$
$$i_N^-(X) := \inf_{M < N} \| (N - M)X(N - M) \|$$

The Radical

Definition 2. For $X \in \operatorname{Alg} \mathcal{N}$, define

$$i_N^+(X) := \inf_{M > N} \| (M - N)X(M - N) \|$$
$$i_N^-(X) := \inf_{M < N} \| (N - M)X(N - M) \|$$

Theorem 2 (Ringrose, '65). The Jacobson Radical, \mathcal{R}_N , of $\operatorname{Alg} \mathcal{N}$ is equal to

 $\{X \in \operatorname{Alg} \mathcal{N} : i_N^+(X) = i_N^-(X) = 0 \quad \forall N \in \mathcal{N}\}$

Let ${\mathcal N}$ be a *continuous* nest.

Theorem 3 (O., '94). Used i_N^+ seminorms to classify the lattice of ideals generated by maximal two-sided ideals. Showed that the strong radical is

 $\{X \in \operatorname{Alg} \mathcal{N} : i_N^+(X) = 0 \text{ on a nowhere dense set}\}$

Let ${\mathcal N}$ be a *continuous* nest.

Theorem 4 (O., '94). Used i_N^+ seminorms to classify the lattice of ideals generated by maximal two-sided ideals. Showed that the strong radical is

 $\{X \in \operatorname{Alg} \mathcal{N} : i_N^+(X) = 0 \text{ on a nowhere dense set}\}$

Remark 4. The strong radical for $\operatorname{Alg} \mathbb{Z}^+$ is unknown.

Compact & Compact Character

• The compact operators, \mathcal{K} , of $\operatorname{Alg} \mathcal{N}$ are an ideal

Compact & Compact Character

- The compact operators, \mathcal{K} , of $\operatorname{Alg} \mathcal{N}$ are an ideal
- Call $X \in \operatorname{Alg} \mathcal{N}$ compact character if (M N)X(M N) is compact for all 0 < N < M < I in \mathcal{N} .

A *ideal* is of compact character if all its elements are. Example:

Compact Character

A *ideal* is of compact character if all its elements are. Example:

 $\mathcal{K}^+ := \{ X \in \operatorname{Alg} \mathcal{N} : N^\perp X N^\perp \in \mathcal{K} \quad \forall N > 0 \}$

Compact Character

A *ideal* is of compact character if all its elements are. Example:

 $\mathcal{K}^- := \{ X \in \operatorname{Alg} \mathcal{N} : NXN \in \mathcal{K} \quad \forall N < I \}$

Compact Character

A *ideal* is of compact character if all its elements are. Example:

Definition 5. A closed two-sided ideal, \mathfrak{I} , is stable if $\alpha(\mathfrak{I}) \subseteq \mathfrak{I}$ for all automorphisms α .

Definition 5. A closed two-sided ideal, \mathcal{I} , is stable if $\alpha(\mathcal{I}) \subseteq \mathcal{I}$ for all automorphisms α .

From here on, all nests are continuous

Definition 5. A closed two-sided ideal, \mathcal{I} , is stable if $\alpha(\mathcal{I}) \subseteq \mathcal{I}$ for all automorphisms α .

Examples:

- The trivial ideals 0 and $\operatorname{Alg} \mathcal{N}$
- The compact operators
- The set of operators of compact character
- The Jacobson radical
- The strong radical
- Many more...

Stable Ideals

Definition 5. A closed two-sided ideal, \mathcal{I} , is stable if $\alpha(\mathcal{I}) \subseteq \mathcal{I}$ for all automorphisms α .

Non-Examples:

- Weakly closed ideals
- Larson's ideal, $\mathcal{R}^\infty_\mathcal{N}$

Stable Compact Char.

The lattice of 11 stable ideals of compact character

Theorem 6 (Ringrose, '66). Every isomorphism $\operatorname{Alg} \mathcal{N}_1 \to \operatorname{Alg} \mathcal{N}_2$ is of the form Ad_S , where S in an invertible operator.

Theorem 8 (Ringrose, '66). Every isomorphism $\operatorname{Alg} \mathcal{N}_1 \to \operatorname{Alg} \mathcal{N}_2$ is of the form Ad_S , where S in an invertible operator.

Theorem 8 (Davidson, '84). If $heta:\mathcal{N}_1 o\mathcal{N}_2$ is an

order-dimension isomorphism then there is an invertible opertator S such that range $(SNS^{-1}) = \text{range}(\theta(N))$ for all $N \in \mathcal{N}_1$

Theorem 8 (Ringrose, '66). Every isomorphism $\operatorname{Alg} \mathcal{N}_1 \to \operatorname{Alg} \mathcal{N}_2$ is of the form Ad_S , where S in an invertible operator.

Theorem 8 (Davidson, '84). If $\theta : \mathcal{N}_1 \to \mathcal{N}_2$ is an order-dimension isomorphism then there is an invertible opertator S such that $\operatorname{range}(SNS^{-1}) = \operatorname{range}(\theta(N))$ for all $N \in \mathcal{N}_1$

Corollary 8. $\operatorname{Out}(\operatorname{Alg} \mathcal{N}) \longleftrightarrow \operatorname{Aut}([0,1])$

Theorem 9 (O., '01). The set $\mathcal{I} \subseteq Alg \mathcal{N}$ is a stable ideal if and only if:

Theorem 9 (O., '01). The set $\mathfrak{I} \subseteq \operatorname{Alg} \mathcal{N}$ is a stable ideal if and only if:

• It is one of the eleven stable ideals of compact character, or

Theorem 9 (O., '01). The set $\mathfrak{I} \subseteq \operatorname{Alg} \mathcal{N}$ is a stable ideal if and only if:

- It is one of the eleven stable ideals of compact character, or
- something horrid...

Main Results

Main results:

- Simple, unified description of the stable ideals
- Classify the stable ideals
- Algebraic properties, quotient norms

Stable Nets

Let P_1 , P_2 be two families of intervals of \mathcal{N} .

Let P_1 , P_2 be two families of intervals of \mathcal{N} .

Needn't be pairwise orthogonal!

Let P_1 , P_2 be two families of intervals of \mathcal{N} .

Needn't even be countable!!

Let P_1 , P_2 be two families of intervals of \mathcal{N} .

Definition 11. Say that P_1 refines P_2 if whenever $E \in P_1$ there is an interval $F \in P_2$ such that $E \leq F$.

Stable Nets

Let P_1 , P_2 be two families of intervals of \mathcal{N} .

Definition 11. Say that P_1 refines P_2 if whenever $E \in P_1$ there is an interval $F \in P_2$ such that $E \leq F$.

Definition 11. A set, Ω , of families of interavls is a *net of intervals* if it is a directed set under this ordering. Ω is a *stable net* if

$$\theta(P) := \{\theta(E) : E \in P\} \in \Omega$$

for all $\theta \in Aut([0,1])$.

Theorem 12 (O., preprint '05). The (non-zero) set $\mathfrak{I} \subseteq \operatorname{Alg} \mathcal{N}$ is a stable ideal if and only if there is a stable net Ω such that \mathfrak{I} is

 $\{X \in \operatorname{Alg} \mathcal{N} : \lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\operatorname{ess}} = 0\}$

Theorem 12 (O., preprint '05). The (non-zero) set $\mathfrak{I} \subseteq \operatorname{Alg} \mathcal{N}$ is a stable ideal if and only if there is a stable net Ω such that \mathfrak{I} is

$$\{X \in \operatorname{Alg} \mathcal{N} : \lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\operatorname{ess}} = 0\}$$

But what does it mean?!

Example 13. Let Ω be just the one family, $P = \{0\}$. Then

$$\lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}} = 0$$

for all X. This gives the ideal $\mathcal{I} = \operatorname{Alg} \mathcal{N}$.

Example 13. Let Ω be just the one family, $P = \{I\}$. Then

 $\lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}} = \|X\|_{\text{ess}} = 0 \quad \Leftrightarrow \quad X \in \mathcal{K}$

This gives the ideal $\mathcal{I} = \mathcal{K}$.

Example 13. Let Ω consist of all singletons $\{N\}$ with N>0. Then

$$\lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}} = \lim_{N \downarrow 0} \|NXN\|_{\text{ess}} = i_0^+(X)$$

This gives the kernel of i_0^+ .

Example 13. Let Ω consist of the single family $\{N : N < I\}$. Then

$$\lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}} = \sup_{N < I} \|NXN\|_{\text{ess}} = 0$$
$$\iff X \in \mathcal{K}^{-}$$

Example 13. Let Ω consist of all finite partitions of $\mathcal{N}.$ Then

$$\lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}} = \lim_{\{E_i\}} \sum_{i=1}^n \|E_i X E_i\| = 0$$

$$X \in \mathcal{R}_{\mathcal{N}}$$

When do two stable nets give the same ideal? Recall $P_1 \ge P_2$ if $\forall E \in P_1 \exists F \in P_2$ s.t. $E \le F$.

When do two stable nets give the same ideal? Recall $P_1 \ge P_2$ if $\forall E \in P_1 \exists F \in P_2$ s.t. $E \le F$. Thus, if $P_1 \ge P_2$ then

$$\sup_{E \in P_1} \|EXE\|_{\text{ess}} \le \sup_{E \in P_2} \|EXE\|_{\text{ess}}$$

Recall $P_1 \ge P_2$ if $\forall E \in P_1 \exists F \in P_2$ s.t. $E \le F$. Thus, if $P_1 \ge P_2$ then

$$\sup_{E \in P_1} \|EXE\|_{\text{ess}} \le \sup_{E \in P_2} \|EXE\|_{\text{ess}}$$

Say Ω_1 is *cofinal* in Ω_2 if $\forall P_2 \in \Omega_2 \exists P_1 \in \Omega_1$ s.t. $P_1 \ge P_2$.

Recall $P_1 \ge P_2$ if $\forall E \in P_1 \exists F \in P_2$ s.t. $E \le F$. Thus, if $P_1 \ge P_2$ then

$$\sup_{E \in P_1} \|EXE\|_{\text{ess}} \le \sup_{E \in P_2} \|EXE\|_{\text{ess}}$$

Say Ω_1 is *cofinal* in Ω_2 if $\forall P_2 \in \Omega_2 \exists P_1 \in \Omega_1$ s.t. $P_1 \ge P_2$. Thus

$$\lim_{P \in \Omega_1} \sup_{E \in P} \|EXE\|_{\text{ess}} \le \lim_{P \in \Omega_2} \sup_{E \in P} \|EXE\|_{\text{ess}}$$

Recall $P_1 \ge P_2$ if $\forall E \in P_1 \exists F \in P_2$ s.t. $E \le F$. Thus, if $P_1 \ge P_2$ then

$$\sup_{E \in P_1} \|EXE\|_{\text{ess}} \le \sup_{E \in P_2} \|EXE\|_{\text{ess}}$$

Say Ω_1 is *cofinal* in Ω_2 if $\forall P_2 \in \Omega_2 \exists P_1 \in \Omega_1$ s.t. $P_1 \ge P_2$. Thus

$$\lim_{P \in \Omega_1} \sup_{E \in P} \|EXE\|_{\text{ess}} \le \lim_{P \in \Omega_2} \sup_{E \in P} \|EXE\|_{\text{ess}}$$

and so $\mathfrak{I}_1 \supseteq \mathfrak{I}_2$.

Theorem 14. Let \mathcal{J}_1 and \mathcal{J}_2 be stable ideals associated with stable nets Ω_1 and Ω_2 . Then $\mathcal{J}_1 \supseteq \mathcal{J}_2$ if and only if Ω_1 is cofinal in Ω_2 .

Theorem 15. Let \mathcal{J}_1 and \mathcal{J}_2 be stable ideals associated with stable nets Ω_1 and Ω_2 . Then $\mathcal{J}_1 \supseteq \mathcal{J}_2$ if and only if Ω_1 is cofinal in Ω_2 . **Corollary 15.** $\mathcal{J}_1 = \mathcal{J}_2$ if and only if \mathcal{J}_1 and \mathcal{J}_2 are mutually cofinal.

Assume $\mathfrak{I}_1 \supseteq \mathfrak{I}_2$

Assume $\mathfrak{I}_1 \supseteq \mathfrak{I}_2$ and fix $Q_0 \in \Omega_2$.

Assume $\mathfrak{I}_1 \supseteq \mathfrak{I}_2$ that refines Q_0 .	and fix $Q_0 \in \Omega_2$.	Goal: Find $P \in \Omega_1$
Q_0		

inner cover

P

outer cover

Match up the inner and outer covers...

Sketch of Proof

 $||X + \mathcal{I}|| = \lim_{P \in \Omega} \sup_{E \in P} ||EXE||_{\text{ess}}$

$$||X + \mathcal{I}|| = \lim_{P \in \Omega} \sup_{E \in P} ||EXE||_{\text{ess}}$$

 $P_{T,a} := \{E : \|ETE < a\|_{\text{ess}}\} \quad T \in \mathcal{I}, a > 0$ $\Omega' := \{P_{T,a} : T \in \mathcal{I}, a > 0\}$

$$||X + \mathcal{I}|| = \lim_{P \in \Omega} \sup_{E \in P} ||EXE||_{\text{ess}}$$

 $P_{T,a} := \{E : \|ETE < a\|_{\text{ess}}\} \quad T \in \mathcal{I}, a > 0$ $\Omega' := \{P_{T,a} : T \in \mathcal{I}, a > 0\}$

Thus Ω' specifies \mathcal{I}

$$||X + \mathcal{I}|| = \lim_{P \in \Omega} \sup_{E \in P} ||EXE||_{\text{ess}}$$

 $P_{T,a} := \{ E : \| ETE < a \|_{\text{ess}} \} \quad T \in \mathcal{I}, a > 0$ $\Omega' := \{ P_{T,a} : T \in \mathcal{I}, a > 0 \}$

Thus Ω' specifies \mathcal{I}

 $\implies \Omega'$ and Ω are mutually cofinal

$$||X + \mathcal{I}|| = \lim_{P \in \Omega} \sup_{E \in P} ||EXE||_{\text{ess}}$$

$$P_{T,a} := \{ E : \| ETE < a \|_{\text{ess}} \} \quad T \in \mathcal{I}, a > 0$$
$$\Omega' := \{ P_{T,a} : T \in \mathcal{I}, a > 0 \}$$

Thus Ω' specifies \mathcal{I}

 $\implies \Omega'$ and Ω are mutually cofinal

$$\implies \lim_{P \in \Omega'} \sup_{E \in P} \|EXE\|_{ess} = \lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{ess}$$

Theorem 17. $\mathfrak{I}_1, \mathfrak{I}_2$ stable ideals $\implies \mathfrak{I}_1 + \mathfrak{I}_2$ stable ideals.

Theorem 17. $\mathfrak{I}_1, \mathfrak{I}_2$ stable ideals $\implies \mathfrak{I}_1 + \mathfrak{I}_2$ stable ideals. How is net for $\mathfrak{I}_1 + \mathfrak{I}_2$ related to $\mathfrak{I}_1, \mathfrak{I}_2$? **Theorem 17.** $\mathfrak{I}_1, \mathfrak{I}_2$ stable ideals $\implies \mathfrak{I}_1 + \mathfrak{I}_2$ stable ideals. Let Ω_1, Ω_2 be stable nets. For $P_1 \in \Omega_1$ and $P_2 \in \Omega_2$ define

$$P_1 \cdot P_2 := \{ E_1 E_2 : E_1 \in P_1, E_2 \in P_2 \}$$

and then define

 $\Omega_1 \cdot \Omega_2 := \{ P_1 \cdot P_2 : P_1 \in \Omega_1, P_2 \in O_2 \}$

Theorem 17. $\mathfrak{I}_1, \mathfrak{I}_2$ stable ideals $\implies \mathfrak{I}_1 + \mathfrak{I}_2$ stable ideals. **Theorem 17.** $\Omega := \Omega_1 \cdot \Omega_2$ is a stable net, and

 $\mathcal{I}_1 + \mathcal{I}_2 = \{ X \in \operatorname{Alg} \mathcal{N} : \lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\operatorname{ess}} = 0 \}$