# Interval Analysis Grading of On-Line Homework 

John L. Orr<br>jorr@math.unl.edu

University of Nebraska-Lincoln

## Introduction

Joint work with Stephen Scott (UNL) and Travis Fisher (UNL \& PSU).

## Introduction

Joint work with Stephen Scott (UNL) and Travis Fisher (UNL \& PSU). Lecture plan:

- Describe practical problem from mathematical software development


## Introduction

Joint work with Stephen Scott (UNL) and Travis Fisher (UNL \& PSU). Lecture plan:

- Describe practical problem from mathematical software development
- Introduce interval analysis concepts


## Introduction

Joint work with Stephen Scott (UNL) and Travis Fisher (UNL \& PSU). Lecture plan:

- Describe practical problem from mathematical software development
- Introduce interval analysis concepts
- Describe our solution to the problem


## Introduction

Joint work with Stephen Scott (UNL) and Travis Fisher (UNL \& PSU). Lecture plan:

- Describe practical problem from mathematical software development
- Introduce interval analysis concepts
- Describe our solution to the problem
- Describe a solution to a related mathematical problem


## Introduction

Joint work with Stephen Scott (UNL) and Travis Fisher (UNL \& PSU). Lecture plan:

- Describe practical problem from mathematical software development
- Introduce interval analysis concepts
- Describe our solution to the problem
- Describe a solution to a related mathematical problem
- Evaluation and results


## Statement of the Problem

Computer grading of students' answers to mathematical questions.

Example: In response to "Differentiate $y=x e^{x "}$ the student enters

$$
x e^{x}+e^{x}
$$

but the stored answer in the question bank is

$$
(1+x) e^{x}
$$

Are the two answers equivalent?

## Context of the Problem

We were developing software for on-line delivery of student assessment.

- Support multiple choice, fill-in-blank, interactive Flash questions, etc
- Multiple, reworkable assignments with different algorithmically-generated parameters
- Vital to be able to grade mathematical questions on content


## Context of the Problem

Our algorithms are now used in

- Brownstone's EDU,
- Wiley's eGrade,
- Prentice Hall's PHGA,
- McGraw-Hill's Netgrade and MHHM,
- Freeman's iSolve,
- Maplesoft's Maple T.A.


## The Zero-Equivalence Problem

Problem: Given two functions $f$ and $g$, determine whether $f(x)=g(x) \forall x \in \mathbb{R}$.
Equivalently, given an expression $f$, determine whether $f(x)=0 \forall x \in \mathbb{R}$.

## The Zero-Equivalence Problem

Problem: Given two functions $f$ and $g$, determine whether $f(x)=g(x) \forall x \in \mathbb{R}$.
Equivalently, given an expression $f$, determine whether $f(x)=0 \forall x \in \mathbb{R}$.
Possible solutions:

- Symbolic manipulation


## The Zero-Equivalence Problem

Problem: Given two functions $f$ and $g$, determine whether $f(x)=g(x) \forall x \in \mathbb{R}$.
Equivalently, given an expression $f$, determine whether $f(x)=0 \forall x \in \mathbb{R}$.
Possible solutions:

- Symbolic manipulation
- Numerical evaluation


## The Zero-Equivalence Problem

Problem: Given two functions $f$ and $g$, determine whether $f(x)=g(x) \forall x \in \mathbb{R}$.

Equivalently, given an expression $f$, determine whether $f(x)=0 \forall x \in \mathbb{R}$.
Possible solutions:

- Symbolic manipulation
- Numerical evaluation
- Caviness, 1970: Undecidable for functions built from $1, \pi,+,-, \times, \div, x, \sin (x),|x|$.


## Monte-Carlo Methods

Method: Evaluate $f(x)$ and $g(x)$ at a set of random points and compare.

- Not always correct if $f \neq g$
- Always correct if $f=g$


## Monte-Carlo Methods

Method: Evaluate $f(x)$ and $g(x)$ at a set of random points and compare.

- Not always correct if $f \neq g$
- Always correct if $f=g \ldots$ or is it?


## Monte-Carlo Methods

Method: Evaluate $f(x)$ and $g(x)$ at a set of random points and compare.

- Not always correct if $f \neq g$
- Always correct if $f=g$... or is it?
- Rounding error problems


## Monte-Carlo Methods

Method: Evaluate $f(x)$ and $g(x)$ at a set of random points and compare.

- Not always correct if $f \neq g$
- Always correct if $f=g$... or is it?
- Rounding error problems

One-sided error would be acceptable in this application, so we wanted to overcome rounding errors

## Review Floating Point Arithmetic

IEEE-754 64 bit floating point number

## Review Floating Point Arithmetic

IEEE-754 64 bit floating point number
sign exponent


## Review Floating Point Arithmetic

IEEE-754 64 bit floating point number


- Sign bit, $S=\{0,1\}$
- Exponent, $0 \leq E \leq 2^{11}-1=2047$


## Review Floating Point Arithmetic

IEEE-754 64 bit floating point number


- Sign bit, $S=\{0,1\}$
- Exponent, $0 \leq E \leq 2^{11}-1=2047$
- Mantissa, $0 \leq M \leq 2^{52}-1$


## Review Floating Point Arithmetic

IEEE-754 64 bit floating point number


- Sign bit, $S=\{0,1\}$
- Exponent, $0 \leq E \leq 2^{11}-1=2047$
- Mantissa, $0 \leq M \leq 2^{52}-1$
- $I=0$ if $E=0 ; I=1$ otherwise


## Review Floating Point Arithmetic

IEEE-754 64 bit floating point number


- Sign bit, $S=\{0,1\}$
- Exponent, $0 \leq E \leq 2^{11}-1=2047$
- Mantissa, $0 \leq M \leq 2^{52}-1$
- $I=0$ if $E=0 ; I=1$ otherwise

$$
x=(-1)^{S}\left(I+2^{-52} M\right) \times 2^{E-1022-I}
$$

## Review Floating Point Arithmetic

## For example,

$$
\begin{aligned}
& 24.5=49 \times 2^{-1} \\
&=110001 \times 10^{-1} \\
&=1.10001 \times 10^{5} \\
&=(-1)^{S}\left(1+2^{-52} M\right) \times 2^{E-1023} \\
& \mapsto \text { sign exponent } \\
& \begin{array}{|l|l|l|}
\hline 0 & 10000000100 & 1000100000000000000000000000000000000000000000000000
\end{array}
\end{aligned}
$$

## Review Floating Point Arithmetic

## Rounding errors, e.g. $0.1+0.2 \neq 0.3$


\(\left.\begin{array}{cl}So, adding \& 0.00011001100110011001100110011001100110011001100110011010 <br>

+ \& 0.0011001100110011001100110011001100110011001100110011010\end{array}\right]\)| $0.01 \underline{001100110011001100110011001100110011001100110011001110}$ |
| :--- |
| $\quad$ which is rounded to |

$0.01 \underline{0011001100110011001100110011001100110011001100110100}$

## Review Floating Point Arithmetic

Rounding errors, e.g. $0.1+0.2 \neq 0.3$

$$
\begin{aligned}
(0.1+0.2) & \mapsto
\end{aligned} \begin{array}{|c|c|c|c|}
\hline 0 & 01111111101 & 0011001100110011001100110011001100110011001100110100 \\
& =\begin{array}{c|c|c|c|c|}
\text { sign exponent } \\
0.010011001100110011001100110011001100110011001100110100
\end{array} \\
& \\
0.3 & \mapsto & \text { sign exponent 2) } & 0 \\
\hline
\end{array}
$$

## These differ by one ULP.

## Interval Analysis

Moore, 1966: Replace numbers with intervals

## Interval Analysis

Moore, 1966: Replace numbers with intervals

$$
\begin{aligned}
& \mathbf{x}=\left[x^{-}, y^{+}\right] \\
& \mathbf{y}=\left[y^{-}, y^{+}\right]
\end{aligned}
$$

## Interval Analysis

Moore, 1966: Replace numbers with intervals

$$
\begin{aligned}
\mathbf{x} & =\left[x^{-}, y^{+}\right] \\
\mathbf{y} & =\left[y^{-}, y^{+}\right] \\
\mathbf{x}+\mathbf{y} & =\left[x^{-}+y^{-}, x^{+}+y^{+}\right]
\end{aligned}
$$

## Interval Analysis

Moore, 1966: Replace numbers with intervals

$$
\begin{aligned}
\mathbf{x} & =\left[x^{-}, y^{+}\right] \\
\mathbf{y} & =\left[y^{-}, y^{+}\right] \\
\mathbf{x}+\mathbf{y} & =\left[x^{-}+y^{-}, x^{+}+y^{+}\right] \\
\mathbf{x} \times \mathbf{y} & =\left[x^{-} y^{-}, x^{+} y^{+}\right] \quad\left(x^{-}, y^{-} \geq 0\right)
\end{aligned}
$$

## Interval Analysis

Moore, 1966: Replace numbers with intervals

$$
\begin{aligned}
\mathbf{x} & =\left[x^{-}, y^{+}\right] \\
\mathbf{y} & =\left[y^{-}, y^{+}\right] \\
\mathbf{x}+\mathbf{y} & =\left[x^{-}+y^{-}, x^{+}+y^{+}\right] \\
\mathbf{x} \times \mathbf{y} & =\left[x^{-} y^{-}, x^{+} y^{+}\right] \quad\left(x^{-}, y^{-} \geq 0\right) \\
f\left(\mathbf{x}_{1}, \ldots, x_{n}\right) & =\left\{f\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbf{x}_{i}\right\}
\end{aligned}
$$

## Interval Analysis

## In practice, use rounded machine arithmetic

## Interval Analysis

In practice, use rounded machine arithmetic

$$
\begin{aligned}
& \mathbf{x}=\left[x^{-}, y^{+}\right] \\
& \mathbf{y}=\left[y^{-}, y^{+}\right]
\end{aligned}
$$

## Interval Analysis

In practice, use rounded machine arithmetic

$$
\begin{aligned}
\mathbf{x} & =\left[x^{-}, y^{+}\right] \\
\mathbf{y} & =\left[y^{-}, y^{+}\right] \\
\mathbf{x}+\mathbf{y} & =\left[x^{-}+_{M} y^{-}, \overline{x^{+}+_{M} y^{+}}\right]
\end{aligned}
$$

## Interval Analysis

In practice, use rounded machine arithmetic

$$
\begin{aligned}
& \mathbf{x}=\left[x^{-}, y^{+}\right] \\
& \mathbf{y}=\left[y^{-}, y^{+}\right] \\
& \mathbf{x}+\mathbf{y}=\left[x^{-}+_{M} y^{-}, \overline{x^{+}+_{M} y^{+}}\right] \\
& \mathbf{x} \times \mathbf{y}=\left[x^{-} \times_{M} y^{-}\right. \\
& x^{+} \times_{M} y^{+}
\end{aligned} \quad\left(x^{-}, y^{-} \geq 0\right), ~ l
$$

## Interval Analysis

In practice, use rounded machine arithmetic

$$
\begin{aligned}
\mathbf{x} & =\left[x^{-}, y^{+}\right] \\
\mathbf{y} & =\left[y^{-}, y^{+}\right] \\
\mathbf{x}+\mathbf{y} & =\left[x^{-}+_{M} y^{-}, \overline{x^{+}+_{M} y^{+}}\right] \\
\mathbf{x} \times \mathbf{y} & =\left[\underline{x^{-} \times_{M} y^{-}}, \overline{x^{+} \times_{M} y^{+}}\right] \quad\left(x^{-}, y^{-} \geq 0\right) \\
\text { etc } &
\end{aligned}
$$

## Interval Analysis

Moral: Using rounded machine interval arithmetic, the true result is always contained in the computed interval.

So, if the intervals $U=f(\mathbf{x})$ and $V=f(\mathbf{y})$ are disjoint, then $f$ and $g$ are guaranteed different.

## Interval Arithmetic Solution

## Algorithm 1:

```
start with TRIALS equal to 0
repeat until TRIALS > MAXTRIALS
    assign random values to each variable in }f\mathrm{ and }
    let U be the rounded interval evaluation of f under those assignments
    let }V\mathrm{ be the rounded interval evaluation of }g\mathrm{ under those assignments
    if }U\capV=
        return FALSE (the functions cannot be equal)
    increment TRIALS
return TRUE (if cannot demonstrate that f and g differ, assume they are equal)
```


## Using Interval Arithmetic



Interval Analysis Grading of On-Line Homework - p. 16

## A Related Problem

Determine whether $f(x)$ and $g(x)$ differ by a constant.
E.g. The student is asked to integrate $\sin (2 x)$.

## Integrate $\sin (2 x)$

One possible route is:

$$
\int \sin (2 x) d x=-\frac{1}{2} \cos (2 x)+C
$$

## Integrate $\sin (2 x)$

One possible route is:

$$
\int \sin (2 x) d x=-\frac{1}{2} \cos (2 x)+C
$$

but another valid approach is

$$
\begin{aligned}
\int \sin (2 x) d x & =\int 2 \sin (x) \cos (x) d x \\
& =\int 2 s d s=\sin ^{2}(x)+C
\end{aligned}
$$

## Integrate $\sin (2 x)$

Moral: Even neglecting the constant of integration, two different approaches to integration can give answers that differ by a constant (1, in this case).

## Interval Arithmetic Solution

## Algorithm 2:

```
start with TRIALS equal to 0 and INTERSECTION equal to [-\infty, \infty
repeat until TRIALS > MAXTRIALS
    assign random values to each variable in f and g
    let }U\mathrm{ be the rounded interval evaluation of }f\mathrm{ under those assignments
    let V be the rounded interval evaluation of g under those assignments
    let INTERSECTION equal INTERSECTION \cap (U - }\mp@subsup{M}{M}{}V
    if INTERSECTION = \emptyset
        return FALSE (we have found a miss)
    increment TRIALS
return TRUE (there is still a range of constants by which f and g might differ)
```


## Interval Arithmetic Solution



## Evaluation

- Evaluated using 8,000 responses to Gateway Exam questions.
- Compared student responses with "correct" responses.
- Performed same comparison using Maple's

$$
\text { evalb (simplify }(f-g)=0)
$$

## Evaluation

|  | Maple | IA Monte-Carlo |
| :---: | :---: | :---: |
|  | simplify | Algorithm |
| $f=g$ | can be wrong | always right |
| $f \neq g$ | always right | can be wrong |

## Evaluation

|  | Maple | IA Monte-Carlo |
| :---: | :---: | :---: |
|  | simplify | Algorithm |
| $f=g$ | can be wrong | always right |
| $f \neq g$ | always right | can be wrong |

Moral: If the two checks agree, then they must be right!

## Evaluation

- We found only 4 discrepancies out of 8,000
- Hand-verified these and found IA Monte-Carlo method was correct in all cases


## Summary

IA Monte-Carlo solution to Zero Equivalence problem is:

## Summary

IA Monte-Carlo solution to Zero Equivalence problem is:

- very fast


## Summary

IA Monte-Carlo solution to Zero Equivalence problem is:

- very fast
- very accurate


## Summary

IA Monte-Carlo solution to Zero Equivalence problem is:

- very fast
- very accurate
- with guaranteed one-sided error

