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Disclaimer

I don’t know what I’m talking about!

This guy does: Yuri Matiyasevich, “Hilbert’s Tenth Problem”
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Hilbert’s Problems

Hilbert’s twenty-three problems

Second International Congress of Mathematicians held in
Paris, 1900

Included Continuum Hypothesis and Riemann Hypothesis

Included general projects such as “Can physics be
axiomatized”?
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Hilert’s Tenth Problem

10. Determination of the Solvability of a Diophantine Equation

Given a diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined by a
finite number of operations whether the equation is solvable in
rational integers.
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A diophantine equation is a polynomial equation of the form

D(x1, . . . , xm) = 0

where D is a polynomial with integer coefficients.

Example.
x2 + y2 − z2 = 0

Example.
x3 + y3 − z3 = 0
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Can we find an algorithm which you can then present with any
diophantine equation, D(x1, . . . , xm) = 0, and be sure that you
will get a “Yes” or “No” answer as to whether the equation has
solutions over N

m?
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Can we find an algorithm which you can then present with any
diophantine equation, D(x1, . . . , xm) = 0, and be sure that you
will get a “Yes” or “No” answer as to whether the equation has
solutions over N

m?

The Answer: NO, WE CAN’T
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Notes

Determining solvability isn’t the same as finding a solution

This wouldn’t answer Fermat’s Last Theorem

By N I mean {0, 1, 2, 3, . . .}

By “solution” I almost always mean “solution in N,” not in Z.
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Why Only Over N?

Over N:
D(x1, x2, . . . , xn) = 0

Over Z:

D(x1,x2, . . . , xn)2

+(y2
1,1 + y2

1,2 + y2
1,3 + y2

1,4 − x1)
2

+(y2
2,1 + y2

2,2 + y2
2,3 + y2

2,4 − x2)
2

...

+(y2
n,1 + y2

n,2 + y2
n,3 + y2

n,4 − xn)2 = 0
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Also study diophantine equation with parameters

D(a1, . . . , an, x1, . . . , xm) = 0

and ask for which values of (a1, . . . , an) does the equation have
a solution.

Example.
ax − by − 1 = 0
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What is a Turing Machine?

It’s a model for a computer

Church-Turing Thesis says it models any computer

What does it look like?

The machine scans a (singly) infinite tape

The machine takes states from X = {x1, . . . , xm}.

The tape holds values from Y = {y1, . . . , yn}
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1 30 2 4 5 6 7 8

Head

Tape

y3 y2y3 y1y2 y1

xi
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How a Turing Machine Works

At each step the machine:
1 scans the current cell while in state x
2 reads the value (y) from that cell
3 writes a value W (x , y) to the cell
4 moves in direction D(x , y)

5 enters state S(x , y)

So the machine is determined by three finite functions:

W : X×Y −→ Y , D : X×Y −→ {−1, 0, 1}, and S : X×Y −→ X

The machine also has a single initial state x1 and some final
states .
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How to Program a Turing Machine

Build simple machines that do basic operations, like:
LEFT or RIGHT
WRITE(y)

READ(y)

STOP or NEVERSTOP
Learn how to compose machines:

if ( M1 ) {
M2

}

or

while ( M1 ) {
M2

}

John Lindsay Orr Hilbert’s Tenth Problem
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Say that a set S ⊆ N is Turing decidable if there is a Turing
machine M such that, whenever M is started with initial data on
the tape encoding a n ∈ N:

M halts in state q2 if n ∈ S

M halts in state q3 if n 6∈ S

John Lindsay Orr Hilbert’s Tenth Problem
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How to Answer Hilbert’s Tenth Problem

Imagine indexing all possible diophantine equations in some
order. E.g. D1, D2, D3, . . ..

Let S = {k : Dk has a solution}.

Hilbert’s 10th problem becomes:

Question

Is S Turing decidable?

John Lindsay Orr Hilbert’s Tenth Problem
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Say that a set S ⊆ N is Turing semidecidable if there is a Turing
machine M such that, whenever M is started with initial data on
the tape encoding a n ∈ N:

if n ∈ S then M eventually halts

if n 6∈ S then M never halts
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Lemma

If S is Turing decidable then S and Sc are Turing
semidecidable.

Proof.

Let M be a machine that decides S. To semidecide S use the
machine:

if ( M ) { STOP }; NEVERSTOP

To semidecide Sc use the machine:

if ( M ) { NEVERSTOP } STOP;

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Turing Machines and Decidability
Diophantine Sets
Universal Diophantine Equations

Lemma

If S is Turing decidable then S and Sc are Turing
semidecidable.

Proof.

Let M be a machine that decides S. To semidecide S use the
machine:

if ( M ) { STOP }; NEVERSTOP

To semidecide Sc use the machine:

if ( M ) { NEVERSTOP } STOP;

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Turing Machines and Decidability
Diophantine Sets
Universal Diophantine Equations

Lemma

If S is Turing decidable then S and Sc are Turing
semidecidable.

Proof.

Let M be a machine that decides S. To semidecide S use the
machine:

if ( M ) { STOP }; NEVERSTOP

To semidecide Sc use the machine:

if ( M ) { NEVERSTOP } STOP;

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Turing Machines and Decidability
Diophantine Sets
Universal Diophantine Equations

Theorem

The set S is Turing decidable if and only if S and Sc are Turing
semidecidable.
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Definition

Say that a set S ⊆ N
k is diophantine if there exists a

diophantine equation

D(a1, . . . , ak , x1, . . . , xn) = 0

such that (a1, . . . , ak ) ∈ S if and only if
D(a1, . . . , ak , x1, . . . , xn) = 0 has a solution in Nn.
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Say that a set S ⊆ N
k is diophantine if there exists a

diophantine equation

D(a1, . . . , ak , x1, . . . , xn) = 0

such that (a1, . . . , ak ) ∈ S if and only if
D(a1, . . . , ak , x1, . . . , xn) = 0 has a solution in Nn.

Example. The set

{(a, b) : gcd(a, b) = 1}

is diophantine.
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Definition

Say that a set S ⊆ N
k is diophantine if there exists a

diophantine equation

D(a1, . . . , ak , x1, . . . , xn) = 0

such that (a1, . . . , ak ) ∈ S if and only if
D(a1, . . . , ak , x1, . . . , xn) = 0 has a solution in Nn.

Example. The set

{(a, b) : gcd(a, b) = 1}

is diophantine. (Take D(a, b, x , y) = ax − by − 1.)
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Example. The set

{a : a is not a prime}

is diophantine.
Proof. Let

D(a, x , y) = (x + 2)(y + 2) − a
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In fact, the set
{a : a is a prime}

is diophantine.

Factoid. A set S ⊆ N is diophantine if and only if S is the set of
non-negative values taken by some integer-coefficient
polynomial as its variables range over N.

Thus, incredibly,

{prime numbers} = N ∩ {D(x1, . . . , xn : x1, . . . , xn ∈ N}
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Lemma
Every diophantine set is Turing semidecidable.
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Proof.

S has a diophantine representation

D(a1, . . . , ak , x1, . . . , xn) = 0

Initialize the tape with (a1, . . . , ak ) ∈ Nk , and run:

foreach x = (x1, . . . , xn) ∈ N
n {

if ( D(a1, . . . , ak , x1, . . . , xn) = 0 ) {
STOP

}
}
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Theorem
Every Turing semidecidable set is diophantine.

Corollary

A set is diophantine ⇐⇒ it is Turing semidecidable.
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Summary

What have we learned?

S is decidable

⇐⇒S, Sc are semidecidable

⇐⇒S, Sc are diophantine

So one way to show a set is not decidable is to show that one
of S or Sc is not diophantine.
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Definition

The integer-coefficient polynomial

U(a1, . . . , ak , c, y1, . . . , yw )

is a universal diophantine polynomial if, for any diophantine
equation

D(a1, . . . , ak , x1, . . . , xn) = 0

we can find a code c ∈ N such that

∃x1, . . . , xn with D(a1, . . . , ak , x1, . . . , xn) = 0

⇐⇒

∃y1, . . . , yw with U(a1, . . . , ak , c, y1, . . . , yw ) = 0
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Theorem
For each k, there exists a universal diophantine equation

Uk(a1, . . . , ak , c, y1, . . . , yw )

Let
H0 = {c : U0(c, y1, . . . , yv ) = 0 has a solution}

This is our “enumeration of the solvable diophantine equations”.

We shall show that H0 is diophantine and Hc
0 is not!
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We shall show that H0 is diophantine and Hc
0 is not!
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Let H1 = {k : U1(k , k , y1, . . . , yw ) = 0 has a solution}

Claim. H1 is a diophantine set but Hc
1 is not.

Proof. (First part) Write D(k , y1, . . . , yw ) = U1(k , k , y1, . . . , yw ).
Then

k ∈ H1 ⇐⇒ D(k , y1, . . . , yw ) has a solution

Thus H1 is diophantine.
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Let H1 = {k : U1(k , k , y1, . . . , yw ) = 0 has a solution}

Claim. H1 is a diophantine set but Hc
1 is not.

Proof. (Second part) If Hc
1 were diophantine there would be a

code, k , for it. But then ask: Does U1(k , k , y1, . . . , yw ) = 0 have
a solution?
If “yes” then k ∈ H1. But k is the code for the set Hc

1 so in
general:

U1(k , k , y1, . . . , yw ) = 0 has a solution ⇐⇒ a ∈ Hc
1

Thus, k ∈ Hc
1 . Contradiction!

If “no” then k ∈ Hc
1 . But likewise a 6∈ Hc

1 . Contradiction!
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Let H0 = {k : U0(k , y1, . . . , yv ) = 0 has a solution}

U1(a, k , y1, . . . , yw ) = 0 has a solution

⇐⇒Dk (a, x1, . . . , xn) = 0 has a solution

⇐⇒W (x1, . . . , xn) = 0 has a solution

⇐⇒U0(c(a, k), y1, . . . , yv ) = 0 has a solution

Thus

c(k , k) ∈ H0 ⇐⇒ k ∈ H1

c(k , k) ∈ Hc
0 ⇐⇒ k ∈ Hc

1

Fact. c(a, k) is a diophantine polynomial ⇒ Hc
0 is not

diophantine!
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Summary

We have seen that

H0 = {k : U0(k , y1, . . . , yv ) = 0 has a solution} is not
Turing decidable.

The elements of H0 are in one-to-one correspondence with
the solvable diophantine equations.

Thus, there is no algorithm to decide which diophantine
equations are solvable and which are not.
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Unions and Intersections

Let S1, S2 ⊆ N
k be diophantine sets with representations

(a1, . . . , ak ) ∈ S1 ⇐⇒ D1(a1, . . . , ak , x1, . . . , xm) = 0 has a solution

and

(a1, . . . , ak ) ∈ S1 ⇐⇒ D2(a1, . . . , ak , y1, . . . , yn) = 0 has a solution

Then S1 ∪ S2 and S1 ∩ S2 are diophantine sets.

Proof. Consider

D1(a1, . . . , ak , x1, . . . , xm)D2(a1, . . . , ak , y1, . . . , yn) = 0

and

D1(a1, . . . , ak , x1, . . . , xm)2 + D2(a1, . . . , ak , y1, . . . , yn)2 = 0

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Working with Diophantine Sets
Coding n-tuples

Unions and Intersections

Let S1, S2 ⊆ N
k be diophantine sets with representations

(a1, . . . , ak ) ∈ S1 ⇐⇒ D1(a1, . . . , ak , x1, . . . , xm) = 0 has a solution

and

(a1, . . . , ak ) ∈ S1 ⇐⇒ D2(a1, . . . , ak , y1, . . . , yn) = 0 has a solution

Then S1 ∪ S2 and S1 ∩ S2 are diophantine sets.

Proof. Consider

D1(a1, . . . , ak , x1, . . . , xm)D2(a1, . . . , ak , y1, . . . , yn) = 0

and

D1(a1, . . . , ak , x1, . . . , xm)2 + D2(a1, . . . , ak , y1, . . . , yn)2 = 0

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Working with Diophantine Sets
Coding n-tuples

Some Basic Diophantine Sets

The set {(a, b) : aRb} is diophantine when “R” is one of the
relations:

a = b (consider “∃x s.t. x + (a − b)2 = 0”)

a < b (consider “∃x s.t. a + x + 1 = b”)

a|b (consider “∃x s.t. ax = b”)

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Working with Diophantine Sets
Coding n-tuples

Some Basic Diophantine Sets

The set {(a, b) : aRb} is diophantine when “R” is one of the
relations:

a = b (consider “∃x s.t. x + (a − b)2 = 0”)

a < b (consider “∃x s.t. a + x + 1 = b”)

a|b (consider “∃x s.t. ax = b”)

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Working with Diophantine Sets
Coding n-tuples

Some Basic Diophantine Sets

The set {(a, b) : aRb} is diophantine when “R” is one of the
relations:

a = b (consider “∃x s.t. x + (a − b)2 = 0”)

a < b (consider “∃x s.t. a + x + 1 = b”)

a|b (consider “∃x s.t. ax = b”)

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Working with Diophantine Sets
Coding n-tuples

Some Basic Diophantine Sets

The set {(a, b) : aRb} is diophantine when “R” is one of the
relations:

a = b (consider “∃x s.t. x + (a − b)2 = 0”)

a < b (consider “∃x s.t. a + x + 1 = b”)

a|b (consider “∃x s.t. ax = b”)

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Working with Diophantine Sets
Coding n-tuples

Some Basic Diophantine Sets

The set {(a, b) : aRb} is diophantine when “R” is one of the
relations:

a = b (consider “∃x s.t. x + (a − b)2 = 0”)

a < b (consider “∃x s.t. a + x + 1 = b”)

a|b (consider “∃x s.t. ax = b”)

The set {(a, b, c) : a = rem(b, c)} is diophantine.

Proof.

a = rem(b, c)

⇐⇒a < c & c|b − a

⇐⇒∃x , y s.t. (a + x + 1 − b)2 + (cy − (b − a))2 = 0
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The set {(a, b, c) : a ≡ b (mod c)} is diophantine.

Proof.

a ≡ b (mod c)

⇐⇒ rem(a, c) = rem(b, c)

⇐⇒∃v , w s.t. v = rem(a, c) & w = rem(b, c) & w = v

⇐⇒∃v , w , x , y , x ′
, y ′

, z s.t. ((v + x + 1 − a)2 + (cy − (a − v))2)2

+ ((w + x ′ + 1 − b)2 + (cy ′ − (b − w))2)2

+ (z + (v − w)2)2 = 0
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⇐⇒∃v , w s.t. v = rem(a, c) & w = rem(b, c) & w = v

⇐⇒∃v , w , x , y , x ′
, y ′

, z s.t. ((v + x + 1 − a)2 + (cy − (a − v))2)2

+ ((w + x ′ + 1 − b)2 + (cy ′ − (b − w))2)2

+ (z + (v − w)2)2 = 0
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Exponentiation is Diophantine

Theorem (Matiyasevich, 1970)

The set {(a, b, c) : a = bc} is diophantine.

Corollary

The set {(a, n) : a = n!} is diophantine.

a is prime ⇐⇒ a > 1 & gcd(a, (a − 1)!) = 1
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Coding n-tuples

(a0, a1, . . . , an)


y

a = a0 + a1b + a2b2 + · · ·
︸ ︷︷ ︸

y

+ akbk
︸ ︷︷ ︸

ebk

+ · · · + anbn
︸ ︷︷ ︸

xbk+1

e = Elem(k , a, b)

⇐⇒

∃x , y s.t. a = y + ebk + xbk+1 & e < b & y < bk

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Working with Diophantine Sets
Coding n-tuples

Coding n-tuples

(a0, a1, . . . , an)


y

a = a0 + a1b + a2b2 + · · ·
︸ ︷︷ ︸

y

+ akbk
︸ ︷︷ ︸

ebk

+ · · · + anbn
︸ ︷︷ ︸

xbk+1

e = Elem(k , a, b)

⇐⇒

∃x , y s.t. a = y + ebk + xbk+1 & e < b & y < bk

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Working with Diophantine Sets
Coding n-tuples

Primes

(b + 1)n =

(
n
0

)

+

(
n
1

)

b + · · ·+

(
n
k

)

bk + · · ·+

(
n
n

)

bn

a =

(
n
k

)

⇐⇒

a = Elem(k , (b + 1)n
, b) & b = 2n

a is prime

⇐⇒

a > 1 & gcd(a, (a − 1)!) = 1
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