Hilbert's Tenth Problem

John Lindsay Orr
Department of Mathematics
Univesity of Nebraska-Lincoln

September 15, 2005

Outline

(9) Introduction

- Disclaimer
- History and Statement of the Problem
(2) Sketch of Proof
- Turing Machines and Decidability
- Diophantine Sets
- Universal Diophantine Equations
(3) Going Into the Details
- Working with Diophantine Sets
- Coding n-tuples

Outline

(9) Introduction

- Disclaimer
- History and Statement of the Problem
(2) Sketch of Proof
- Turing Machines and Decidability
- Diophantine Sets
- Universal Diophantine Equations
(3) Going Into the Details
- Working with Diophantine Sets
- Coding n-tuples

Disclaimer

- I don't know what I'm talking about!
- This guy does: Yuri Matiyasevich, "Hilbert's Tenth Problem"

Outline

(9) Introduction

- Disclaimer
- History and Statement of the Problem

(2)Sketch of Proof

- Turing Machines and Decidability
- Diophantine Sets
- Universal Diophantine Equations
(3) Going Into the Details
- Working with Diophantine Sets
- Coding n-tuples

Hilbert's Problems

- Hilbert's twenty-three problems
- Second International Congress of Mathematicians held in Paris, 1900
- Included Continuum Hypothesis and Riemann Hypothesis
- Included general projects such as "Can physics be axiomatized"?

Hilert's Tenth Problem

10. Determination of the Solvability of a Diophantine Equation

Given a diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

A diophantine equation is a polynomial equation of the form

$$
D\left(x_{1}, \ldots, x_{m}\right)=0
$$

where D is a polynomial with integer coefficients.

Example.

$$
x^{2}+y^{2}-z^{2}=0
$$

Example.

$$
x^{3}+y^{3}-z^{3}=0
$$

Can we find an algorithm which you can then present with any diophantine equation, $D\left(x_{1}, \ldots, x_{m}\right)=0$, and be sure that you will get a "Yes" or "No" answer as to whether the equation has solutions over \mathbb{N}^{m} ?

Can we find an algorithm which you can then present with any diophantine equation, $D\left(x_{1}, \ldots, x_{m}\right)=0$, and be sure that you will get a "Yes" or "No" answer as to whether the equation has solutions over \mathbb{N}^{m} ?

The Answer: NO, WE CAN'T

Notes

- Determining solvability isn't the same as finding a solution
- This wouldn't answer Fermat's Last Theorem
- By \mathbb{N} I mean $\{0,1,2,3, \ldots\}$
- By "solution" I almost always mean "solution in \mathbb{N}," not in \mathbb{Z}.

Notes

- Determining solvability isn't the same as finding a solution
- This wouldn't answer Fermat's Last Theorem
- By \mathbb{N} I mean $\{0,1,2,3$,
- By "solution" I almost always mean "solution in \mathbb{N}," not in \mathbb{Z}.

Notes

- Determining solvability isn't the same as finding a solution
- This wouldn't answer Fermat's Last Theorem
- By \mathbb{N} I mean $\{0,1,2,3, \ldots\}$
- By "solution" I almost always mean "solution in \mathbb{N}," not in \mathbb{Z}.

Notes

- Determining solvability isn't the same as finding a solution
- This wouldn't answer Fermat's Last Theorem
- By \mathbb{N} I mean $\{0,1,2,3, \ldots\}$
- By "solution" I almost always mean "solution in \mathbb{N}," not in \mathbb{Z}.

Why Only Over \mathbb{N} ?

Over \mathbb{N} :

$$
D\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
$$

Over \mathbb{Z} :

$$
\begin{aligned}
& D\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{2} \\
& \quad+\left(y_{1,1}^{2}+y_{1,2}^{2}+y_{1,3}^{2}+y_{1,4}^{2}-x_{1}\right)^{2} \\
& \quad+\left(y_{2,1}^{2}+y_{2,2}^{2}+y_{2,3}^{2}+y_{2,4}^{2}-x_{2}\right)^{2} \\
& \quad \vdots \\
& \quad+\left(y_{n, 1}^{2}+y_{n, 2}^{2}+y_{n, 3}^{2}+y_{n, 4}^{2}-x_{n}\right)^{2}=0
\end{aligned}
$$

Also study diophantine equation with parameters

$$
D\left(a_{1}, \ldots, a_{n}, x_{1}, \ldots, x_{m}\right)=0
$$

and ask for which values of $\left(a_{1}, \ldots, a_{n}\right)$ does the equation have a solution.

Example.

$$
a x-b y-1=0
$$

Outline

(4) Introduction

- Disclaimer
- History and Statement of the Problem
(2) Sketch of Proof
- Turing Machines and Decidability
- Diophantine Sets
- Universal Diophantine Equations
(3) Going Into the Details
- Working with Diophantine Sets
- Coding n-tuples

What is a Turing Machine?

- It's a model for a computer
- Church-Turing Thesis says it models any computer

What does it look like?

- The machine scans a (singly) infinite tape
- The machine takes states from $X=\left\{x_{1}, \ldots, x_{m}\right\}$.
- The tape holds values from $Y=\left\{y_{1}, \ldots, y_{n}\right\}$

What is a Turing Machine?

- It's a model for a computer
- Church-Turing Thesis says it models any computer

What does it look like?

- The machine scans a (singly) infinite tape
- The machine takes states from $X=\left\{x_{1}, \ldots, x_{m}\right\}$
- The tape holds values from $Y=\left\{y_{1}, \ldots, y_{n}\right\}$

What is a Turing Machine?

- It's a model for a computer
- Church-Turing Thesis says it models any computer What does it look like?
- The machine scans a (singly) infinite tape
- The machine takes states from $X=\left\{x_{1}, \ldots, x_{m}\right\}$.
- The tane holds values from $Y=\left\{y_{1}, \ldots, v_{n}\right\}$

What is a Turing Machine?

- It's a model for a computer
- Church-Turing Thesis says it models any computer What does it look like?
- The machine scans a (singly) infinite tape
- The machine takes states from $X=\left\{x_{1}, \ldots, x_{m}\right\}$
- The tape holds values from $Y=\left\{y_{1}, \ldots, y_{n}\right\}$

What is a Turing Machine?

- It's a model for a computer
- Church-Turing Thesis says it models any computer

What does it look like?

- The machine scans a (singly) infinite tape
- The machine takes states from $X=\left\{x_{1}, \ldots, x_{m}\right\}$.
- The tape holds values from $Y=\left\{y_{1}, \ldots, y_{n}\right\}$

What is a Turing Machine?

- It's a model for a computer
- Church-Turing Thesis says it models any computer

What does it look like?

- The machine scans a (singly) infinite tape
- The machine takes states from $X=\left\{x_{1}, \ldots, x_{m}\right\}$.
- The tape holds values from $Y=\left\{y_{1}, \ldots, y_{n}\right\}$

How a Turing Machine Works

At each step the machine:

(1) scans the current cell while in state x
2) reads the value (y) from that cell
(3) writes a value $W(x, y)$ to the cell
(4) moves in direction $D(x, y)$
(5) enters state $S(x, y)$

So the machine is determined by three finite functions:
$W: X \times Y \longrightarrow Y, \quad D: X \times Y \longrightarrow\{-1,0,1\}$, and $S: X \times Y \longrightarrow X$
The machine also has a single initial state x_{1} and some final states.

How a Turing Machine Works

At each step the machine:
(1) scans the current cell while in state x
(2) reads the value (y) from that cell
(3) writes a value $W(x, y)$ to the cell

4 moves in direction $D(x, y)$
(6) enters state $S(x, y)$

So the machine is determined by three finite functions:

The machine also has a single initial state x_{1} and some final states.

How a Turing Machine Works

At each step the machine:
(1) scans the current cell while in state x
(2) reads the value (y) from that cell
(3) writes a value $W(x, y)$ to the cell
(4) moves in direction $D(x, y)$
(3) enters state $S(x, y)$

So the machine is determined by three finite functions:

The machine also has a single initial state x_{1} and some final states.

How a Turing Machine Works

At each step the machine:
(1) scans the current cell while in state x
(2) reads the value (y) from that cell
(3) writes a value $W(x, y)$ to the cell
(4) moves in direction $D(x, y)$
(5) enters state $S(x, y)$

So the machine is determined by three finite functions:

The machine also has a single initial state x_{1} and some final
states.

How a Turing Machine Works

At each step the machine:
(1) scans the current cell while in state x
(2) reads the value (y) from that cell
(3) writes a value $W(x, y)$ to the cell

4 moves in direction $D(x, y)$
(6) enters state $S(x, y)$

So the machine is determined by three finite functions:

The machine also has a single initial state x_{1} and some final
states.

How a Turing Machine Works

At each step the machine:
(1) scans the current cell while in state x
(2) reads the value (y) from that cell
(3) writes a value $W(x, y)$ to the cell
(4) moves in direction $D(x, y)$
(5) enters state $S(x, y)$

So the machine is determined by three finite functions:

The machine also has a single initial state x_{1} and some final
states.

How a Turing Machine Works

At each step the machine:
(1) scans the current cell while in state x
(2) reads the value (y) from that cell
(3) writes a value $W(x, y)$ to the cell
(4) moves in direction $D(x, y)$
(5) enters state $S(x, y)$

So the machine is determined by three finite functions:
$W: X \times Y \longrightarrow Y, \quad D: X \times Y \longrightarrow\{-1,0,1\}$, and $S: X \times Y \longrightarrow X$
The machine also has a single initial state x_{1} and some final
states.

How a Turing Machine Works

At each step the machine:
(1) scans the current cell while in state x
(2) reads the value (y) from that cell
(3) writes a value $W(x, y)$ to the cell

4 moves in direction $D(x, y)$
(5) enters state $S(x, y)$

So the machine is determined by three finite functions:

$$
W: X \times Y \longrightarrow Y, \quad D: X \times Y \longrightarrow\{-1,0,1\}, \text { and } S: X \times Y \longrightarrow X
$$

The machine also has a single initial state x_{1} and some final states.

How to Program a Turing Machine

Build simple machines that do basic operations, like:

- LEFT or RIGHT
- WRITE (y)
- READ (y)
- STOP or NEVERSTOP

Learn how to compose machines:

```
if ( M M ) {
    M
while ( }\mp@subsup{M}{1}{}\mathrm{ ) {
    M2
```


How to Program a Turing Machine

Build simple machines that do basic operations, like:

- LEFT or RIGHT
- WRITE(y)
- READ (y)
- STOP or NEVERSTOP

Learn how to compose machines:

How to Program a Turing Machine

Build simple machines that do basic operations, like:

- LEFT or RIGHT
- WRITE (y)
- READ (y)
- STOP or NEVERSTOP

Learn how to compose machines:

How to Program a Turing Machine

Build simple machines that do basic operations, like:

- LEFT or RIGHT
- WRITE (y)
- READ (y)
- STOP or NEVERSTOP

Learn how to compose machines:

How to Program a Turing Machine

Build simple machines that do basic operations, like:

- LEFT or RIGHT
- WRITE (y)
- READ (y)
- STOP or NEVERSTOP

Learn how to compose machines:

How to Program a Turing Machine

Build simple machines that do basic operations, like:

- LEFT or RIGHT
- WRITE (y)
- READ (y)
- STOP or NEVERSTOP

Learn how to compose machines:

```
if ( }\mp@subsup{M}{1}{})
    M2
}
```

or
while (M_{1}) \{
M_{2}
\}

Say that a set $S \subseteq \mathbb{N}$ is Turing decidable if there is a Turing machine M such that, whenever M is started with initial data on the tape encoding a $n \in \mathbb{N}$:

- M halts in state q_{2} if $n \in S$
- M halts in state q_{3} if $n \notin S$

How to Answer Hilbert's Tenth Problem

Imagine indexing all possible diophantine equations in some order. E.g. $D_{1}, D_{2}, D_{3}, \ldots$..

Let $S=\left\{k: D_{k}\right.$ has a solution $\}$.
Hilbert's 10th problem becomes:

Question

Is S Turing decidable?

Say that a set $S \subseteq \mathbb{N}$ is Turing semidecidable if there is a Turing machine M such that, whenever M is started with initial data on the tape encoding a $n \in \mathbb{N}$:

- if $n \in S$ then M eventually halts
- if $n \notin S$ then M never halts

Lemma

If S is Turing decidable then S and S^{c} are Turing semidecidable.

Proof.

Let M be a machine that decides S. To semidecide S use the
machine:

if (M) \{ STOP \}; NEVERSTOP

To semidecide S^{c} use the machinc:
if (M) \{ NEVERSTOP $\}$ STOP;

Lemma

If S is Turing decidable then S and S^{c} are Turing semidecidable.

Proof.

Let M be a machine that decides S. To semidecide S use the machine:

$$
\text { if (} M \text {) \{ STOP \}; NEVERSTOP }
$$

To semidecide S^{C} use the machine:

$$
\text { if (} M \text {) \{ NEVERSTOP \} STOP; }
$$

Lemma

If S is Turing decidable then S and S^{c} are Turing semidecidable.

Proof.

Let M be a machine that decides S. To semidecide S use the machine:

$$
\text { if (} M \text {) \{ STOP \}; NEVERSTOP }
$$

To semidecide S^{c} use the machine:

$$
\text { if (} M \text {) \{ NEVERSTOP \} STOP; }
$$

Theorem
 The set S is Turing decidable if and only if S and S^{c} are Turing semidecidable.

Outline

(4) Introduction

- Disclaimer
- History and Statement of the Problem
(2) Sketch of Proof
- Turing Machines and Decidability
- Diophantine Sets
- Universal Diophantine Equations
(3) Going Into the Details
- Working with Diophantine Sets
- Coding n-tuples

Definition

Say that a set $S \subseteq \mathbb{N}^{k}$ is diophantine if there exists a diophantine equation

$$
D\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{n}\right)=0
$$

such that $\left(a_{1}, \ldots, a_{k}\right) \in S$ if and only if $D\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{n}\right)=0$ has a solution in N^{n}.

Definition

Say that a set $S \subseteq \mathbb{N}^{k}$ is diophantine if there exists a diophantine equation

$$
D\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{n}\right)=0
$$

such that $\left(a_{1}, \ldots, a_{k}\right) \in S$ if and only if $D\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{n}\right)=0$ has a solution in N^{n}.

Example. The set

$$
\{(a, b): \operatorname{gcd}(a, b)=1\}
$$

is diophantine.

Definition

Say that a set $S \subseteq \mathbb{N}^{k}$ is diophantine if there exists a diophantine equation

$$
D\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{n}\right)=0
$$

such that $\left(a_{1}, \ldots, a_{k}\right) \in S$ if and only if $D\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{n}\right)=0$ has a solution in N^{n}.
Example. The set

$$
\{(a, b): \operatorname{gcd}(a, b)=1\}
$$

is diophantine. (Take $D(a, b, x, y)=a x-b y-1$.)

Example. The set

$\{a: a$ is not a prime $\}$

is diophantine.
Proof. Let

$$
D(a, x, y)=(x+2)(y+2)-a
$$

In fact, the set

$$
\{a: a \text { is a prime }\}
$$

is diophantine.

Factoid. A set $S \subseteq \mathbb{N}$ is diophantine if and only if S is the set of non-negative values taken by some integer-coefficient polynomial as its variables range over \mathbb{N}.

Thus, incredibly,
$\{$ prime numbers $\}=\mathbb{N} \cap\left\{D\left(x_{1}, \ldots, x_{n}: x 1, \ldots, x_{n} \in \mathbb{N}\right\}\right.$

Lemma

Every diophantine set is Turing semidecidable.

Proof.

S has a diophantine representation

$$
D\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{n}\right)=0
$$

Initialize the tape with $\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{N}_{k}$, and run:


```
        STOP
    }
}
```


Theorem

Every Turing semidecidable set is diophantine.

Corollary

A set is diophantine \Longleftrightarrow it is Turing semidecidable.

Theorem

Every Turing semidecidable set is diophantine.

Corollary

A set is diophantine \Longleftrightarrow it is Turing semidecidable.

Summary

What have we learned?
S is decidable
$\Longleftrightarrow S, S^{C}$ are semidecidable
$\Longleftrightarrow S, S^{C}$ are diophantine
So one way to show a set is not decidable is to show that one of S or S^{c} is not diophantine.

Outline

(4) Introduction

- Disclaimer
- History and Statement of the Problem
(2) Sketch of Proof
- Turing Machines and Decidability
- Diophantine Sets
- Universal Diophantine EquationsGoing Into the Details
- Working with Diophantine Sets
- Coding n-tuples

Definition

The integer-coefficient polynomial

$$
U\left(a_{1}, \ldots, a_{k}, c, y_{1}, \ldots, y_{w}\right)
$$

is a universal diophantine polynomial if, for any diophantine equation

$$
D\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{n}\right)=0
$$

we can find a code $c \in \mathbb{N}$ such that

$$
\exists x_{1}, \ldots, x_{n} \text { with } D\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{n}\right)=0
$$

$$
\exists y_{1}, \ldots, y_{w} \text { with } U\left(a_{1}, \ldots, a_{k}, c, y_{1}, \ldots, y_{w}\right)=0
$$

Theorem

For each k, there exists a universal diophantine equation

$$
U_{k}\left(a_{1}, \ldots, a_{k}, c, y_{1}, \ldots, y_{w}\right)
$$

Let

$H_{0}=\left\{c: U_{0}\left(c, y_{1}, \ldots, y_{v}\right)=0\right.$ has a solution $\}$

This is our "enumeration of the solvable dionhantine equations".

We shall show that H_{0} is diophantine and H_{0}^{C} is not!

Theorem

For each k, there exists a universal diophantine equation

$$
U_{k}\left(a_{1}, \ldots, a_{k}, c, y_{1}, \ldots, y_{w}\right)
$$

Let

$$
H_{0}=\left\{c: U_{0}\left(c, y_{1}, \ldots, y_{v}\right)=0 \text { has a solution }\right\}
$$

This is our "enumeration of the solvable diophantine equations".

We shall show that H_{0} is diophantine and H_{0}^{c} is not!

Theorem

For each k, there exists a universal diophantine equation

$$
U_{k}\left(a_{1}, \ldots, a_{k}, c, y_{1}, \ldots, y_{w}\right)
$$

Let

$$
H_{0}=\left\{c: U_{0}\left(c, y_{1}, \ldots, y_{v}\right)=0 \text { has a solution }\right\}
$$

This is our "enumeration of the solvable diophantine equations".

We shall show that H_{0} is diophantine and H_{0}^{c} is not!

Let $H_{1}=\left\{k: U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0\right.$ has a solution $\}$
Claim. H_{1} is a diophantine set but H_{1}^{c} is not.

Proof. (First part) Write $D\left(k, y_{1}, \ldots, y_{w}\right)=U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)$.

Let $H_{1}=\left\{k: U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0\right.$ has a solution $\}$

Claim. H_{1} is a diophantine set but H_{1}^{c} is not.
Proof. (First part) Write $D\left(k, y_{1}, \ldots, y_{w}\right)=U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)$. Then

$$
k \in H_{1} \Longleftrightarrow D\left(k, y_{1}, \ldots, y_{w}\right) \text { has a solution }
$$

Thus H_{1} is diophantine.

Let $H_{1}=\left\{k: U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0\right.$ has a solution $\}$
Claim. H_{1} is a diophantine set but H_{1}^{c} is not.
Proof. (First part) Write $D\left(k, y_{1}, \ldots, y_{w}\right)=U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)$. Then
$k \in H_{1} \Longleftrightarrow D\left(k, y_{1}, \ldots, y_{w}\right)$ has a solution

Thus H_{1} is diophantine.

Let $H_{1}=\left\{k: U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0\right.$ has a solution $\}$
Claim. H_{1} is a diophantine set but H_{1}^{c} is not.
Proof. (First part) Write $D\left(k, y_{1}, \ldots, y_{w}\right)=U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)$.
Then

$$
k \in H_{1} \Longleftrightarrow D\left(k, y_{1}, \ldots, y_{w}\right) \text { has a solution }
$$

Thus H_{1} is diophantine.

Let $H_{1}=\left\{k: U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0\right.$ has a solution $\}$
Claim. H_{1} is a diophantine set but H_{1}^{c} is not.
Proof. (Second part) If H_{1}^{c} were diophantine there would be a code, k, for it. But then ask: Does $U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0$ have

a solution?

If "yes" then $k \in H_{1}$. But k is the code for the set H_{1}^{c} so in general:
$U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0$ has a solution $\Longleftrightarrow a \in H_{1}^{c}$
Thus, $k \in H_{1}^{c}$. Contradiction! If "no" then $k \in H_{1}^{c}$. But likewise $a \notin H_{1}^{c}$. Contradiction!

Let $H_{1}=\left\{k: U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0\right.$ has a solution $\}$
Claim. H_{1} is a diophantine set but H_{1}^{c} is not.
Proof. (Second part) If H_{1}^{c} were diophantine there would be a code, k, for it. But then ask: Does $U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0$ have a solution?
If "yes" then $k \in H_{1}$. But k is the code for the set H_{1}^{c} so in general:

$$
U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0 \text { has a solution } \Longleftrightarrow a \in H_{1}^{c}
$$

Thus, $k \in H_{1}^{c}$. Contradiction!
If "no" then $k \in H_{1}^{c}$. But likewise $a \notin H_{1}^{c}$. Contradiction!

Let $H_{1}=\left\{k: U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0\right.$ has a solution $\}$
Claim. H_{1} is a diophantine set but H_{1}^{c} is not.
Proof. (Second part) If H_{1}^{c} were diophantine there would be a code, k, for it. But then ask: Does $U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0$ have a solution?
If "yes" then $k \in H_{1}$. But k is the code for the set H_{1}^{c} so in
general:

$$
U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0 \text { has a solution } \Longleftrightarrow a \in H_{1}^{c}
$$

Thus, $k \in H_{1}^{c}$. Contradiction!
If "no" then $k \in H_{1}^{c}$. But likewise $a \notin H_{1}^{c}$. Contradiction!

Let $H_{1}=\left\{k: U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0\right.$ has a solution $\}$
Claim. H_{1} is a diophantine set but H_{1}^{c} is not.
Proof. (Second part) If H_{1}^{c} were diophantine there would be a code, k, for it. But then ask: Does $U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0$ have a solution?
If "yes" then $k \in H_{1}$. But k is the code for the set H_{1}^{c} so in general:

$$
U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0 \text { has a solution } \Longleftrightarrow a \in H_{1}^{c}
$$

Thus, $k \in H_{1}^{c}$. Contradiction!
If "no" then $k \in H_{1}^{c}$. But likewise $a \notin H_{1}^{c}$. Contradiction!

Let $H_{1}=\left\{k: U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0\right.$ has a solution $\}$
Claim. H_{1} is a diophantine set but H_{1}^{c} is not.
Proof. (Second part) If H_{1}^{c} were diophantine there would be a code, k, for it. But then ask: Does $U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0$ have a solution?
If "yes" then $k \in H_{1}$. But k is the code for the set H_{1}^{c} so in general:

$$
U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0 \text { has a solution } \Longleftrightarrow a \in H_{1}^{c}
$$

Thus, $k \in H_{1}^{c}$. Contradiction!
If "no" then $k \in H_{1}^{c}$. But likewise $a \notin H_{1}^{c}$. Contradiction!

Let $H_{1}=\left\{k: U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0\right.$ has a solution $\}$
Claim. H_{1} is a diophantine set but H_{1}^{c} is not.
Proof. (Second part) If H_{1}^{c} were diophantine there would be a code, k, for it. But then ask: Does $U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0$ have a solution?
If "yes" then $k \in H_{1}$. But k is the code for the set H_{1}^{c} so in general:

$$
U_{1}\left(k, k, y_{1}, \ldots, y_{w}\right)=0 \text { has a solution } \Longleftrightarrow a \in H_{1}^{c}
$$

Thus, $k \in H_{1}^{c}$. Contradiction!
If "no" then $k \in H_{1}^{c}$. But likewise $a \notin H_{1}^{c}$. Contradiction!

Let $H_{0}=\left\{k: U_{0}\left(k, y_{1}, \ldots, y_{v}\right)=0\right.$ has a solution $\}$

$$
\begin{aligned}
& U_{1}\left(a, k, y_{1}, \ldots, y_{w}\right)=0 \text { has a solution } \\
\Longleftrightarrow & D_{k}\left(a, x_{1}, \ldots, x_{n}\right)=0 \text { has a solution } \\
\Longleftrightarrow & W\left(x_{1}, \ldots, x_{n}\right)=0 \text { has a solution } \\
\Longleftrightarrow & U_{0}\left(c(a, k), y_{1}, \ldots, y_{v}\right)=0 \text { has a solution }
\end{aligned}
$$

Thus

Fact. $c(a, k)$ is a diophantine polynomial $\Rightarrow H_{0}^{c}$ is not diophantine!

Let $H_{0}=\left\{k: U_{0}\left(k, y_{1}, \ldots, y_{v}\right)=0\right.$ has a solution $\}$

$$
U_{1}\left(a, k, y_{1}, \ldots, y_{w}\right)=0 \text { has a solution }
$$

$$
\Longleftrightarrow D_{k}\left(a, x_{1}, \ldots, x_{n}\right)=0 \text { has a solution }
$$

$$
\Longleftrightarrow W\left(x_{1}, \ldots, x_{n}\right)=0 \text { has a solution }
$$

$$
\Longleftrightarrow U_{0}\left(c(a, k), y_{1}, \ldots, y_{v}\right)=0 \text { has a solution }
$$

Thus

Fact. $c(a, k)$ is a diophantine polynomial $\Rightarrow H_{0}^{c}$ is not diophantine!

Let $H_{0}=\left\{k: U_{0}\left(k, y_{1}, \ldots, y_{v}\right)=0\right.$ has a solution $\}$

$$
\begin{aligned}
& U_{1}\left(a, k, y_{1}, \ldots, y_{w}\right)=0 \text { has a solution } \\
\Longleftrightarrow & D_{k}\left(a, x_{1}, \ldots, x_{n}\right)=0 \text { has a solution } \\
\Longleftrightarrow & W\left(x_{1}, \ldots, x_{n}\right)=0 \text { has a solution } \\
\Longleftrightarrow & U_{0}\left(c(a, k), y_{1}, \ldots, y_{v}\right)=0 \text { has a solution }
\end{aligned}
$$

Thus

Fact. $c(a, k)$ is a diophantine polynomial $\Rightarrow H_{0}^{c}$ is not diophantine!

Let $H_{0}=\left\{k: U_{0}\left(k, y_{1}, \ldots, y_{v}\right)=0\right.$ has a solution $\}$

$$
\begin{aligned}
& U_{1}\left(a, k, y_{1}, \ldots, y_{w}\right)=0 \text { has a solution } \\
\Longleftrightarrow & D_{k}\left(a, x_{1}, \ldots, x_{n}\right)=0 \text { has a solution } \\
\Longleftrightarrow & W\left(x_{1}, \ldots, x_{n}\right)=0 \text { has a solution } \\
\Longleftrightarrow & U_{0}\left(c(a, k), y_{1}, \ldots, y_{v}\right)=0 \text { has a solution }
\end{aligned}
$$

Thus

$$
\begin{aligned}
& c(k, k) \in H_{0} \Longleftrightarrow k \in H_{1} \\
& c(k, k) \in H_{0}^{c} \Longleftrightarrow k \in H_{1}^{c}
\end{aligned}
$$

Fact. $c(a, k)$ is a diophantine polynomial $\Rightarrow H_{0}^{c}$ is not diophantine!

Let $H_{0}=\left\{k: U_{0}\left(k, y_{1}, \ldots, y_{v}\right)=0\right.$ has a solution $\}$

$$
\begin{aligned}
& U_{1}\left(a, k, y_{1}, \ldots, y_{w}\right)=0 \text { has a solution } \\
\Longleftrightarrow & D_{k}\left(a, x_{1}, \ldots, x_{n}\right)=0 \text { has a solution } \\
\Longleftrightarrow & W\left(x_{1}, \ldots, x_{n}\right)=0 \text { has a solution } \\
\Longleftrightarrow & U_{0}\left(c(a, k), y_{1}, \ldots, y_{v}\right)=0 \text { has a solution }
\end{aligned}
$$

Thus

$$
\begin{aligned}
& c(k, k) \in H_{0} \Longleftrightarrow k \in H_{1} \\
& c(k, k) \in H_{0}^{c} \Longleftrightarrow k \in H_{1}^{c}
\end{aligned}
$$

Fact. $c(a, k)$ is a diophantine polynomial $\Rightarrow H_{0}^{c}$ is not diophantine!

Let $H_{0}=\left\{k: U_{0}\left(k, y_{1}, \ldots, y_{v}\right)=0\right.$ has a solution $\}$

$$
\begin{aligned}
& U_{1}\left(a, k, y_{1}, \ldots, y_{w}\right)=0 \text { has a solution } \\
\Longleftrightarrow & D_{k}\left(a, x_{1}, \ldots, x_{n}\right)=0 \text { has a solution } \\
\Longleftrightarrow & W\left(x_{1}, \ldots, x_{n}\right)=0 \text { has a solution } \\
\Longleftrightarrow & U_{0}\left(c(a, k), y_{1}, \ldots, y_{v}\right)=0 \text { has a solution }
\end{aligned}
$$

Thus

$$
c(k, k) \in H_{0} \Longleftrightarrow k \in H_{1}
$$

Fact. $c(a, k)$ is a diophantine polynomial $\Rightarrow H_{0}^{c}$ is not diophantine!

Let $H_{0}=\left\{k: U_{0}\left(k, y_{1}, \ldots, y_{v}\right)=0\right.$ has a solution $\}$

$$
\begin{aligned}
& U_{1}\left(a, k, y_{1}, \ldots, y_{w}\right)=0 \text { has a solution } \\
\Longleftrightarrow & D_{k}\left(a, x_{1}, \ldots, x_{n}\right)=0 \text { has a solution } \\
\Longleftrightarrow & W\left(x_{1}, \ldots, x_{n}\right)=0 \text { has a solution } \\
\Longleftrightarrow & U_{0}\left(c(a, k), y_{1}, \ldots, y_{v}\right)=0 \text { has a solution }
\end{aligned}
$$

Thus

$$
\begin{aligned}
& c(k, k) \in H_{0} \Longleftrightarrow k \in H_{1} \\
& c(k, k) \in H_{0}^{c} \Longleftrightarrow k \in H_{1}^{c}
\end{aligned}
$$

Fact. $c(a, k)$ is a diophantine polynomial $\Rightarrow H_{0}^{c}$ is not diophantine!

Let $H_{0}=\left\{k: U_{0}\left(k, y_{1}, \ldots, y_{v}\right)=0\right.$ has a solution $\}$

$$
\begin{aligned}
& U_{1}\left(a, k, y_{1}, \ldots, y_{w}\right)=0 \text { has a solution } \\
\Longleftrightarrow & D_{k}\left(a, x_{1}, \ldots, x_{n}\right)=0 \text { has a solution } \\
\Longleftrightarrow & W\left(x_{1}, \ldots, x_{n}\right)=0 \text { has a solution } \\
\Longleftrightarrow & U_{0}\left(c(a, k), y_{1}, \ldots, y_{v}\right)=0 \text { has a solution }
\end{aligned}
$$

Thus

$$
\begin{aligned}
& c(k, k) \in H_{0} \Longleftrightarrow k \in H_{1} \\
& c(k, k) \in H_{0}^{c} \Longleftrightarrow k \in H_{1}^{c}
\end{aligned}
$$

Fact. $c(a, k)$ is a diophantine polynomial $\Rightarrow H_{0}^{c}$ is not diophantine!

Summary

We have seen that

- $H_{0}=\left\{k: U_{0}\left(k, y_{1}, \ldots, y_{v}\right)=0\right.$ has a solution $\}$ is not Turing decidable.
- The elements of H_{0} are in one-to-one correspondence with the solvable diophantine equations.
- Thus, there is no algorithm to decide which diophantine equations are solvable and which are not.

Summary

We have seen that

- $H_{0}=\left\{k: U_{0}\left(k, y_{1}, \ldots, y_{v}\right)=0\right.$ has a solution $\}$ is not Turing decidable.
- The elements of H_{0} are in one-to-one correspondence with the solvable diophantine equations.
- Thus, there is no algorithm to decide which diophantine equations are solvable and which are not.

Summary

We have seen that

- $H_{0}=\left\{k: U_{0}\left(k, y_{1}, \ldots, y_{v}\right)=0\right.$ has a solution $\}$ is not Turing decidable.
- The elements of H_{0} are in one-to-one correspondence with the solvable diophantine equations.
- Thus, there is no algorithm to decide which diophantine equations are solvable and which are not.

Summary

We have seen that

- $H_{0}=\left\{k: U_{0}\left(k, y_{1}, \ldots, y_{v}\right)=0\right.$ has a solution $\}$ is not Turing decidable.
- The elements of H_{0} are in one-to-one correspondence with the solvable diophantine equations.
- Thus, there is no algorithm to decide which diophantine equations are solvable and which are not.

Outline

(4) Introduction

- Disclaimer
- History and Statement of the Problem

2) Sketch of Proof

- Turing Machines and Decidability
- Diophantine Sets
- Universal Diophantine Equations

3 Going Into the Details

- Working with Diophantine Sets
- Coding n-tuples

Unions and Intersections

Let $S_{1}, S_{2} \subseteq \mathbb{N}^{k}$ be diophantine sets with representations
$\left(a_{1}, \ldots, a_{k}\right) \in S_{1} \Longleftrightarrow D_{1}\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{m}\right)=0$ has a solution and
$\left(a_{1}, \ldots, a_{k}\right) \in S_{1} \Longleftrightarrow D_{2}\left(a_{1}, \ldots, a_{k}, y_{1}, \ldots, y_{n}\right)=0$ has a solution
Then $S_{1} \cup S_{2}$ and $S_{1} \cap S_{2}$ are diophantine sets.
Proof. Consider
$D_{1}\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{m}\right) D_{2}\left(a_{1}, \ldots, a_{k}, y_{1}, \ldots, y_{n}\right)=0$
and
$D_{1}\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{m}\right)^{2}+D_{2}\left(a_{1}, \ldots, a_{k}, y_{1}, \ldots, y_{n}\right)^{2}=0$

Unions and Intersections

Let $S_{1}, S_{2} \subseteq \mathbb{N}^{k}$ be diophantine sets with representations
$\left(a_{1}, \ldots, a_{k}\right) \in S_{1} \Longleftrightarrow D_{1}\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{m}\right)=0$ has a solution and
$\left(a_{1}, \ldots, a_{k}\right) \in S_{1} \Longleftrightarrow D_{2}\left(a_{1}, \ldots, a_{k}, y_{1}, \ldots, y_{n}\right)=0$ has a solution
Then $S_{1} \cup S_{2}$ and $S_{1} \cap S_{2}$ are diophantine sets.
Proof. Consider

$$
D_{1}\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{m}\right) D_{2}\left(a_{1}, \ldots, a_{k}, y_{1}, \ldots, y_{n}\right)=0
$$

and

$$
D_{1}\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{m}\right)^{2}+D_{2}\left(a_{1}, \ldots, a_{k}, y_{1}, \ldots, y_{n}\right)^{2}=0
$$

Some Basic Diophantine Sets

The set $\{(a, b): a R b\}$ is diophantine when " R " is one of the relations:

- $a=b$ (consider " $\exists x$ s.t. $\left.x+(a-b)^{2}=0 "\right)$
- $a<b$ (consider " $\exists x$ s.t. $a+x+1=b$ ")
- alb (consider" $\exists x$ s.t $a x=b$ ")

Some Basic Diophantine Sets

The set $\{(a, b): a R b\}$ is diophantine when " R " is one of the relations:

- $a=b$ (consider " $\exists x$ s.t. $x+(a-b)^{2}=0$ ")
- $a<b$ (consider " $\exists x$ s.t. $a+x+1=b$ ")
- $a \mid b$ (consider " $\exists x$ s.t. $a x=b$ ")

Some Basic Diophantine Sets

The set $\{(a, b): a R b\}$ is diophantine when " R " is one of the relations:

- $a=b$ (consider " $\exists x$ s.t. $x+(a-b)^{2}=0$ ")
- $a<b$ (consider " $\exists x$ s.t. $a+x+1=b$ ")

Some Basic Diophantine Sets

The set $\{(a, b): a R b\}$ is diophantine when " R " is one of the relations:

- $a=b$ (consider " $\exists x$ s.t. $x+(a-b)^{2}=0$ ")
- $a<b$ (consider " $\exists x$ s.t. $a+x+1=b$ ")
- $a \mid b$ (consider " $\exists x$ s.t. $a x=b$ ")

Some Basic Diophantine Sets

The set $\{(a, b): a R b\}$ is diophantine when " R " is one of the relations:

- $a=b$ (consider " $\exists x$ s.t. $x+(a-b)^{2}=0$ ")
- $a<b$ (consider " $\exists x$ s.t. $a+x+1=b$ ")
- $a \mid b$ (consider " $\exists x$ s.t. $a x=b$ ")

The set $\{(a, b, c): a=r e m(b, c)\}$ is diophantine.
Proof.

Some Basic Diophantine Sets

The set $\{(a, b): a R b\}$ is diophantine when " R " is one of the relations:

- $a=b$ (consider " $\exists x$ s.t. $x+(a-b)^{2}=0$ ")
- $a<b$ (consider " $\exists x$ s.t. $a+x+1=b$ ")
- $a \mid b$ (consider " $\exists x$ s.t. $a x=b$ ")

The set $\{(a, b, c): a=r e m(b, c)\}$ is diophantine.
Proof.

$$
\begin{aligned}
& a=\operatorname{rem}(b, c) \\
\Longleftrightarrow & a<c \& c \mid b-a \\
\Longleftrightarrow & \exists x, y \text { s.t. }(a+x+1-b)^{2}+(c y-(b-a))^{2}=0
\end{aligned}
$$

Some Basic Diophantine Sets

The set $\{(a, b): a R b\}$ is diophantine when " R " is one of the relations:

- $a=b$ (consider " $\exists x$ s.t. $x+(a-b)^{2}=0$ ")
- $a<b$ (consider " $\exists x$ s.t. $a+x+1=b$ ")
- $a \mid b$ (consider " $\exists x$ s.t. $a x=b$ ")

The set $\{(a, b, c): a=r e m(b, c)\}$ is diophantine.
Proof.

$$
\begin{aligned}
a & =\operatorname{rem}(b, c) \\
\Longleftrightarrow a & <c \& c \mid b-a
\end{aligned}
$$

$$
\Longleftrightarrow \exists x, y \text { s.t. }(a+x+1-b)^{2}+(c y-(b-a))^{2}=0
$$

Some Basic Diophantine Sets

The set $\{(a, b): a R b\}$ is diophantine when " R " is one of the relations:

- $a=b$ (consider " $\exists x$ s.t. $x+(a-b)^{2}=0$ ")
- $a<b$ (consider " $\exists x$ s.t. $a+x+1=b$ ")
- $a \mid b$ (consider " $\exists x$ s.t. $a x=b$ ")

The set $\{(a, b, c): a=r e m(b, c)\}$ is diophantine.
Proof.

$$
\begin{aligned}
& a=\operatorname{rem}(b, c) \\
\Longleftrightarrow & a<c \& c \mid b-a \\
\Longleftrightarrow & \exists x, y \text { s.t. }(a+x+1-b)^{2}+(c y-(b-a))^{2}=0
\end{aligned}
$$

The set $\{(a, b, c): a \equiv b(\bmod c)\}$ is diophantine.

Proof.

$$
\begin{gathered}
a \equiv b(\bmod c) \\
\Longleftrightarrow \operatorname{rem}(a, c)=\operatorname{rem}(b, c)
\end{gathered}
$$

The set $\{(a, b, c): a \equiv b(\bmod c)\}$ is diophantine.

Proof.

$$
\begin{aligned}
& a \equiv b(\bmod c) \\
\Longleftrightarrow & \operatorname{rem}(a, c)=\operatorname{rem}(b, c) \\
\Longleftrightarrow & \exists v, w \text { s.t. } v=\operatorname{rem}(a, c) \& w=\operatorname{rem}(b, c) \& w=v
\end{aligned}
$$

$$
\Longleftrightarrow \exists v, w, x, y, x^{\prime}, y^{\prime}, z \text { s.t. }\left((v+x+1-a)^{2}+(c y-(a-v))^{2}\right)^{2}
$$

$$
+\left(z+(v-w)^{2}\right)^{2}=0
$$

The set $\{(a, b, c): a \equiv b(\bmod c)\}$ is diophantine.

Proof.

$$
\begin{aligned}
& \quad a \equiv b(\bmod c) \\
& \Longleftrightarrow \\
& \Longleftrightarrow \operatorname{rem}(a, c)=\operatorname{rem}(b, c) \\
& \Longleftrightarrow \exists v, w \text { s.t. } v=\operatorname{rem}(a, c) \& w=\operatorname{rem}(b, c) \& w=v \\
& \Longleftrightarrow \exists v, w, x, y, x^{\prime}, y^{\prime}, z \text { s.t. }\left((v+x+1-a)^{2}+(c y-(a-v))^{2}\right)^{2} \\
& \\
& \quad+\left(\left(w+x^{\prime}+1-b\right)^{2}+\left(c y^{\prime}-(b-w)\right)^{2}\right)^{2} \\
& \\
& \quad+\left(z+(v-w)^{2}\right)^{2}=0
\end{aligned}
$$

Exponentiation is Diophantine

Theorem (Matiyasevich, 1970)

The set $\left\{(a, b, c): a=b^{c}\right\}$ is diophantine.

Corollary

The set $\{(a, n): a=n!\}$ is diophantine.
a is prime $\Longleftrightarrow a>1 \& \operatorname{gcd}(a,(a-1)!)=1$

Exponentiation is Diophantine

Theorem (Matiyasevich, 1970)

The set $\left\{(a, b, c): a=b^{c}\right\}$ is diophantine.

Corollary

The set $\{(a, n): a=n!\}$ is diophantine.

$$
a \text { is prime } \Longleftrightarrow a>1 \& \operatorname{gcd}(a,(a-1)!)=1
$$

Exponentiation is Diophantine

Theorem (Matiyasevich, 1970)

The set $\left\{(a, b, c): a=b^{c}\right\}$ is diophantine.

Corollary

The set $\{(a, n): a=n!\}$ is diophantine.
a is prime $\Longleftrightarrow a>1 \& \operatorname{gcd}(a,(a-1)!)=1$

Outline

(4) Introduction

- Disclaimer
- History and Statement of the Problem
(2) Sketch of Proof
- Turing Machines and Decidability
- Diophantine Sets
- Universal Diophantine Equations

3 Going Into the Details

- Working with Diophantine Sets
- Coding n-tuples

Coding n-tuples

$$
\begin{gathered}
\left(a_{0}, a_{1}, \ldots, a_{n}\right) \\
a=\underbrace{a_{0}+a_{1} b+a_{2} b^{2}+\cdots}_{y}+\underbrace{a_{k} b^{k}}_{e b^{k}}+\underbrace{\cdots+a_{n} b^{n}}_{x b^{k+1}}
\end{gathered}
$$

$$
e=E l e m(k, a, b)
$$

Coding n-tuples

$e=\operatorname{Elem}(k, a, b)$
$\exists x, y \quad$ s.t. $\quad a=y+e b^{k}+x b^{k+1} \quad \& e<b \& y<b^{k}$

Primes

$$
(b+1)^{n}=\binom{n}{0}+\binom{n}{1} b+\cdots+\binom{n}{k} b^{k}+\cdots+\binom{n}{n} b^{n}
$$

$a=\operatorname{Elem}\left(k,(b+1)^{n}, b\right) \& b=2^{n}$
a is prime

Primes

$$
\begin{gathered}
(b+1)^{n}=\binom{n}{0}+\binom{n}{1} b+\cdots+\binom{n}{k} b^{k}+\cdots+\binom{n}{n} b^{n} \\
\quad a=\binom{n}{k} \\
\Longleftrightarrow \\
a=\operatorname{Elem}\left(k,(b+1)^{n}, b\right) \& b=2^{n}
\end{gathered}
$$

a is prime

$$
a>1 \& \operatorname{gcd}(a,(a-1)!)=1
$$

Primes

$$
\begin{gathered}
(b+1)^{n}=\binom{n}{0}+\binom{n}{1} b+\cdots+\binom{n}{k} b^{k}+\cdots+\binom{n}{n} b^{n} \\
a=\binom{n}{k} \\
\Longleftrightarrow \\
a=\operatorname{Elem}\left(k,(b+1)^{n}, b\right) \& b=2^{n}
\end{gathered}
$$

a is prime

$$
a>1 \& \operatorname{gcd}(a,(a-1)!)=1
$$

