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Disclaimer

I don’t know what I’m talking about!

This guy does: Yuri Matiyasevich, “Hilbert’s Tenth Problem”
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Hilbert’s Problems

Hilbert’s twenty-three problems

Second International Congress of Mathematicians held in
Paris, 1900

Included Continuum Hypothesis and Riemann Hypothesis

Included general projects such as “Can physics be
axiomatized”?

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Disclaimer
History and Statement of the Problem

Hilert’s Tenth Problem

10. Determination of the Solvability of a Diophantine Equation

Given a diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined by a
finite number of operations whether the equation is solvable in
rational integers.
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A diophantine equation is a polynomial equation of the form

D(x1, . . . , xm) = 0

where D is a polynomial with integer coefficients.

Example.
x2 + y2 − z2 = 0

Example.
x3 + y3 − z3 = 0
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Can we find an algorithm which you can then present with any
diophantine equation, D(x1, . . . , xm) = 0, and be sure that you
will get a “Yes” or “No” answer as to whether the equation has
solutions over N

m?
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Can we find an algorithm which you can then present with any
diophantine equation, D(x1, . . . , xm) = 0, and be sure that you
will get a “Yes” or “No” answer as to whether the equation has
solutions over N

m?

The Answer: NO, WE CAN’T
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Notes

Determining solvability isn’t the same as finding a solution

This wouldn’t answer Fermat’s Last Theorem

By N I mean {0, 1, 2, 3, . . .}

By “solution” I almost always mean “solution in N,” not in Z.
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Why Only Over N?

Over N:
D(x1, x2, . . . , xn) = 0

Over Z:

D(x1,x2, . . . , xn)2

+(y2
1,1 + y2

1,2 + y2
1,3 + y2

1,4 − x1)
2

+(y2
2,1 + y2

2,2 + y2
2,3 + y2

2,4 − x2)
2

...

+(y2
n,1 + y2

n,2 + y2
n,3 + y2

n,4 − xn)2 = 0
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Also study diophantine equation with parameters

D(a1, . . . , an, x1, . . . , xm) = 0

and ask for which values of (a1, . . . , an) does the equation have
a solution.

Example.
ax − by − 1 = 0
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What is a Turing Machine?

It’s a model for a computer

Church-Turing Thesis says it models any computer

What does it look like?

The machine scans a (singly) infinite tape

The machine takes states from X = {x1, . . . , xm}.

The tape holds values from Y = {y1, . . . , yn}
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1 30 2 4 5 6 7 8

Head

Tape

y3 y2y3 y1y2 y1

xi
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How a Turing Machine Works

At each step the machine:
1 scans the current cell while in state x
2 reads the value (y) from that cell
3 writes a value W (x , y) to the cell
4 moves in direction D(x , y)

5 enters state S(x , y)

So the machine is determined by three finite functions:

W : X×Y −→ Y , D : X×Y −→ {−1, 0, 1}, and S : X×Y −→ X

The machine also has a single initial state x1 and some final
states .
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How to Program a Turing Machine

Build simple machines that do basic operations, like:
LEFT or RIGHT
WRITE(y)

READ(y)

STOP or NEVERSTOP
Learn how to compose machines:

if ( M1 ) {
M2

}

or

while ( M1 ) {
M2

}

John Lindsay Orr Hilbert’s Tenth Problem
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Say that a set S ⊆ N is Turing decidable if there is a Turing
machine M such that, whenever M is started with initial data on
the tape encoding a n ∈ N:

M halts in state q2 if n ∈ S

M halts in state q3 if n 6∈ S

John Lindsay Orr Hilbert’s Tenth Problem
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How to Answer Hilbert’s Tenth Problem

Imagine indexing all possible diophantine equations in some
order. E.g. D1, D2, D3, . . ..

Let S = {k : Dk has a solution}.

Hilbert’s 10th problem becomes:

Question

Is S Turing decidable?

John Lindsay Orr Hilbert’s Tenth Problem
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Say that a set S ⊆ N is Turing semidecidable if there is a Turing
machine M such that, whenever M is started with initial data on
the tape encoding a n ∈ N:

if n ∈ S then M eventually halts

if n 6∈ S then M never halts
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Lemma

If S is Turing decidable then S and Sc are Turing
semidecidable.

Proof.

Let M be a machine that decides S. To semidecide S use the
machine:

if ( M ) { STOP }; NEVERSTOP

To semidecide Sc use the machine:

if ( M ) { NEVERSTOP } STOP;

John Lindsay Orr Hilbert’s Tenth Problem
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Theorem

The set S is Turing decidable if and only if S and Sc are Turing
semidecidable.
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Definition

Say that a set S ⊆ N
k is diophantine if there exists a

diophantine equation

D(a1, . . . , ak , x1, . . . , xn) = 0

such that (a1, . . . , ak ) ∈ S if and only if
D(a1, . . . , ak , x1, . . . , xn) = 0 has a solution in Nn.
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Say that a set S ⊆ N
k is diophantine if there exists a

diophantine equation

D(a1, . . . , ak , x1, . . . , xn) = 0

such that (a1, . . . , ak ) ∈ S if and only if
D(a1, . . . , ak , x1, . . . , xn) = 0 has a solution in Nn.

Example. The set

{(a, b) : gcd(a, b) = 1}

is diophantine.
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Definition

Say that a set S ⊆ N
k is diophantine if there exists a

diophantine equation

D(a1, . . . , ak , x1, . . . , xn) = 0

such that (a1, . . . , ak ) ∈ S if and only if
D(a1, . . . , ak , x1, . . . , xn) = 0 has a solution in Nn.

Example. The set

{(a, b) : gcd(a, b) = 1}

is diophantine. (Take D(a, b, x , y) = ax − by − 1.)
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Example. The set

{a : a is not a prime}

is diophantine.
Proof. Let

D(a, x , y) = (x + 2)(y + 2) − a
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In fact, the set
{a : a is a prime}

is diophantine.

Factoid. A set S ⊆ N is diophantine if and only if S is the set of
non-negative values taken by some integer-coefficient
polynomial as its variables range over N.

Thus, incredibly,

{prime numbers} = N ∩ {D(x1, . . . , xn : x1, . . . , xn ∈ N}
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Lemma
Every diophantine set is Turing semidecidable.
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Proof.

S has a diophantine representation

D(a1, . . . , ak , x1, . . . , xn) = 0

Initialize the tape with (a1, . . . , ak ) ∈ Nk , and run:

foreach x = (x1, . . . , xn) ∈ N
n {

if ( D(a1, . . . , ak , x1, . . . , xn) = 0 ) {
STOP

}
}
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Theorem
Every Turing semidecidable set is diophantine.

Corollary

A set is diophantine ⇐⇒ it is Turing semidecidable.
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Summary

What have we learned?

S is decidable

⇐⇒S, Sc are semidecidable

⇐⇒S, Sc are diophantine

So one way to show a set is not decidable is to show that one
of S or Sc is not diophantine.
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Definition

The integer-coefficient polynomial

U(a1, . . . , ak , c, y1, . . . , yw )

is a universal diophantine polynomial if, for any diophantine
equation

D(a1, . . . , ak , x1, . . . , xn) = 0

we can find a code c ∈ N such that

∃x1, . . . , xn with D(a1, . . . , ak , x1, . . . , xn) = 0

⇐⇒

∃y1, . . . , yw with U(a1, . . . , ak , c, y1, . . . , yw ) = 0
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Theorem
For each k, there exists a universal diophantine equation

Uk(a1, . . . , ak , c, y1, . . . , yw )

Let
H0 = {c : U0(c, y1, . . . , yv ) = 0 has a solution}

This is our “enumeration of the solvable diophantine equations”.

We shall show that H0 is diophantine and Hc
0 is not!
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We shall show that H0 is diophantine and Hc
0 is not!
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Let H1 = {k : U1(k , k , y1, . . . , yw ) = 0 has a solution}

Claim. H1 is a diophantine set but Hc
1 is not.

Proof. (First part) Write D(k , y1, . . . , yw ) = U1(k , k , y1, . . . , yw ).
Then

k ∈ H1 ⇐⇒ D(k , y1, . . . , yw ) has a solution

Thus H1 is diophantine.
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Let H1 = {k : U1(k , k , y1, . . . , yw ) = 0 has a solution}

Claim. H1 is a diophantine set but Hc
1 is not.

Proof. (Second part) If Hc
1 were diophantine there would be a

code, k , for it. But then ask: Does U1(k , k , y1, . . . , yw ) = 0 have
a solution?
If “yes” then k ∈ H1. But k is the code for the set Hc

1 so in
general:

U1(k , k , y1, . . . , yw ) = 0 has a solution ⇐⇒ a ∈ Hc
1

Thus, k ∈ Hc
1 . Contradiction!

If “no” then k ∈ Hc
1 . But likewise a 6∈ Hc

1 . Contradiction!
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Let H0 = {k : U0(k , y1, . . . , yv ) = 0 has a solution}

U1(a, k , y1, . . . , yw ) = 0 has a solution

⇐⇒Dk (a, x1, . . . , xn) = 0 has a solution

⇐⇒W (x1, . . . , xn) = 0 has a solution

⇐⇒U0(c(a, k), y1, . . . , yv ) = 0 has a solution

Thus

c(k , k) ∈ H0 ⇐⇒ k ∈ H1

c(k , k) ∈ Hc
0 ⇐⇒ k ∈ Hc

1

Fact. c(a, k) is a diophantine polynomial ⇒ Hc
0 is not

diophantine!
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Summary

We have seen that

H0 = {k : U0(k , y1, . . . , yv ) = 0 has a solution} is not
Turing decidable.

The elements of H0 are in one-to-one correspondence with
the solvable diophantine equations.

Thus, there is no algorithm to decide which diophantine
equations are solvable and which are not.
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Unions and Intersections

Let S1, S2 ⊆ N
k be diophantine sets with representations

(a1, . . . , ak ) ∈ S1 ⇐⇒ D1(a1, . . . , ak , x1, . . . , xm) = 0 has a solution

and

(a1, . . . , ak ) ∈ S1 ⇐⇒ D2(a1, . . . , ak , y1, . . . , yn) = 0 has a solution

Then S1 ∪ S2 and S1 ∩ S2 are diophantine sets.

Proof. Consider

D1(a1, . . . , ak , x1, . . . , xm)D2(a1, . . . , ak , y1, . . . , yn) = 0

and

D1(a1, . . . , ak , x1, . . . , xm)2 + D2(a1, . . . , ak , y1, . . . , yn)2 = 0
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Some Basic Diophantine Sets

The set {(a, b) : aRb} is diophantine when “R” is one of the
relations:

a = b (consider “∃x s.t. x + (a − b)2 = 0”)

a < b (consider “∃x s.t. a + x + 1 = b”)

a|b (consider “∃x s.t. ax = b”)
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Some Basic Diophantine Sets

The set {(a, b) : aRb} is diophantine when “R” is one of the
relations:

a = b (consider “∃x s.t. x + (a − b)2 = 0”)

a < b (consider “∃x s.t. a + x + 1 = b”)

a|b (consider “∃x s.t. ax = b”)

The set {(a, b, c) : a = rem(b, c)} is diophantine.

Proof.

a = rem(b, c)

⇐⇒a < c & c|b − a

⇐⇒∃x , y s.t. (a + x + 1 − b)2 + (cy − (b − a))2 = 0

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Working with Diophantine Sets
Coding n-tuples

Some Basic Diophantine Sets

The set {(a, b) : aRb} is diophantine when “R” is one of the
relations:

a = b (consider “∃x s.t. x + (a − b)2 = 0”)

a < b (consider “∃x s.t. a + x + 1 = b”)

a|b (consider “∃x s.t. ax = b”)

The set {(a, b, c) : a = rem(b, c)} is diophantine.

Proof.

a = rem(b, c)

⇐⇒a < c & c|b − a

⇐⇒∃x , y s.t. (a + x + 1 − b)2 + (cy − (b − a))2 = 0

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Working with Diophantine Sets
Coding n-tuples

Some Basic Diophantine Sets

The set {(a, b) : aRb} is diophantine when “R” is one of the
relations:

a = b (consider “∃x s.t. x + (a − b)2 = 0”)

a < b (consider “∃x s.t. a + x + 1 = b”)

a|b (consider “∃x s.t. ax = b”)

The set {(a, b, c) : a = rem(b, c)} is diophantine.

Proof.

a = rem(b, c)

⇐⇒a < c & c|b − a

⇐⇒∃x , y s.t. (a + x + 1 − b)2 + (cy − (b − a))2 = 0

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Working with Diophantine Sets
Coding n-tuples

Some Basic Diophantine Sets

The set {(a, b) : aRb} is diophantine when “R” is one of the
relations:

a = b (consider “∃x s.t. x + (a − b)2 = 0”)

a < b (consider “∃x s.t. a + x + 1 = b”)

a|b (consider “∃x s.t. ax = b”)

The set {(a, b, c) : a = rem(b, c)} is diophantine.

Proof.

a = rem(b, c)

⇐⇒a < c & c|b − a

⇐⇒∃x , y s.t. (a + x + 1 − b)2 + (cy − (b − a))2 = 0

John Lindsay Orr Hilbert’s Tenth Problem



Introduction
Sketch of Proof

Going Into the Details

Working with Diophantine Sets
Coding n-tuples

The set {(a, b, c) : a ≡ b (mod c)} is diophantine.

Proof.

a ≡ b (mod c)

⇐⇒ rem(a, c) = rem(b, c)

⇐⇒∃v , w s.t. v = rem(a, c) & w = rem(b, c) & w = v

⇐⇒∃v , w , x , y , x ′
, y ′

, z s.t. ((v + x + 1 − a)2 + (cy − (a − v))2)2

+ ((w + x ′ + 1 − b)2 + (cy ′ − (b − w))2)2

+ (z + (v − w)2)2 = 0
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⇐⇒∃v , w s.t. v = rem(a, c) & w = rem(b, c) & w = v

⇐⇒∃v , w , x , y , x ′
, y ′

, z s.t. ((v + x + 1 − a)2 + (cy − (a − v))2)2

+ ((w + x ′ + 1 − b)2 + (cy ′ − (b − w))2)2

+ (z + (v − w)2)2 = 0
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Exponentiation is Diophantine

Theorem (Matiyasevich, 1970)

The set {(a, b, c) : a = bc} is diophantine.

Corollary

The set {(a, n) : a = n!} is diophantine.

a is prime ⇐⇒ a > 1 & gcd(a, (a − 1)!) = 1
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Coding n-tuples

(a0, a1, . . . , an)


y

a = a0 + a1b + a2b2 + · · ·
︸ ︷︷ ︸

y

+ akbk
︸ ︷︷ ︸

ebk

+ · · · + anbn
︸ ︷︷ ︸

xbk+1

e = Elem(k , a, b)

⇐⇒

∃x , y s.t. a = y + ebk + xbk+1 & e < b & y < bk
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Primes

(b + 1)n =

(
n
0

)

+

(
n
1

)

b + · · ·+

(
n
k

)

bk + · · ·+

(
n
n

)

bn

a =

(
n
k

)

⇐⇒

a = Elem(k , (b + 1)n
, b) & b = 2n

a is prime

⇐⇒

a > 1 & gcd(a, (a − 1)!) = 1
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